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1 Introduction 
This project seeks to support ongoing improvements to the U.S. land use, land use change, and forestry 
(LULUCF) greenhouse gas (GHG) inventory by quantifying uncertainty from all equations and datasets 
using statistical methods, and estimating major omitted sources using literature review, and using this 
quantitative analysis to prioritize recommendations for research and data improvements.  

Led by Emily McGlynn (University of California, Davis), the project consortium includes ClimateWorks 
Foundation, California Environmental Associates, Industrial Economics, and research fellows Kandice 
Harper and Serena Li. The research team has worked over the past year in collaboration with leading 
academics and federal experts that work directly on the NGHGI in order to compile the best available 
information on current inventory methods and data.  

In the Technical Appendix, we present the quantitative methods used to estimate and attribute sources 
of uncertainty across the LULUCF chapter and agriculture soil management sections of the U.S. National 
Greenhouse Gas Inventory (NGHGI), as well as methods to quantify each identified omitted GHG flux. 
The Technical Appendix is organized by land category, covering (1) Forests, (2) Croplands and 
Grasslands, (3) Settlements, (4) Wetlands, and (5) Alaska, Hawaii, and U.S. Territories. Each land use type 
is then further segmented by NGHGHI flux categories. Each flux category in this document includes the 
following information: 

• NGHGI Methods: Brief description of NGHGI quantification methods and key data sources 
• Project Methods: Description of our methods for quantifying and attributing uncertainty across 

data inputs, equations, assumptions, and biases 
• Results: Uncertainty attribution and/or omitted flux estimation results 
• Discussion: Reflection on limitations of our methods and take-away points for developing 

recommendations based on results  

For most of the Project Methods described below, we utilize uncertainty attribution methods to estimate 
how much each component of a calculation contributes to overall uncertainty. Wherever possible, we 
utilize the “contribution index” equation (Equation 1) from Ogle et al. (2003) to estimate uncertainty 
attribution from each element of uncertainty. Using this method requires recreating the GHG flux 
calculation in its entirety, and using either Monte Carlo or error propagation to estimate the 95% 
confidence interval of the GHG flux when holding each element of the calculation constant. 

Equation 1: Contribution index (Ogle et al. 2003) 

𝐼𝑛𝑑𝑒𝑥(𝑖) = 	
𝑅𝑎𝑛𝑔𝑒(𝑓𝑢𝑙𝑙) − 𝑅𝑎𝑛𝑔𝑒(𝑖)

∑ 𝑅𝑎𝑛𝑔𝑒3
456 (𝑓𝑢𝑙𝑙) − 𝑅𝑎𝑛𝑔𝑒(𝑗)

	× 100 

Where:  

i = 1,…,J represents each element of uncertainty; 

Index(i) is the percentage contribution of element i to total uncertainty, measured by Range(full); 
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Range(full) is the difference between the 97.5th quantile and the 2.5th quantile of the uncertainty 

range accounting for all elements of uncertainty, or the magnitude of the full 95% confidence 

interval; and 

Range(i) is the magnitude of the 95% confidence interval holding element i constant. 

For each flux category of the NGHGI we can estimate the percentage contribution of each element to 
total uncertainty, but we can also convert that percentage into million metric tons (MMT) CO2e by 
multiplying the index value by the magnitude of the relevant 95% confidence interval, which enables us 
to compare elements’ contributions to uncertainty across flux categories. 

Every result table and original calculation in this document can also be found in the Spreadsheet 
Appendix, which provides additional information on calculation methods and equations.



 

Reducng Climate Policy Risk Technical Appendix  5 

2 Forests 

2.1 Carbon stock change in forest biomass and deadwood 

NGHGI METHODS 
To quantify carbon fluxes in forest ecosystems, the NGHGI uses the stock-difference method, where the 
forest carbon flux in year t is calculated as the difference between carbon stocks in year t and year t-1. 
The NGHGI decomposes forest ecosystem carbon stocks into five distinct pools: (1) carbon in the 
aboveground biomass of live trees; (2) carbon in the belowground biomass of live trees; (3) carbon in 
dead wood, including both downed dead wood and standing dead trees; (4) carbon in litter; and (5) 
carbon in soil. Forest ecosystem carbon stocks are quantified using a Tier 3 method. Tree, downed dead 
wood, litter, and soil measurements are taken on U.S. forest land plots through the Forest Inventory and 
Analysis (FIA) program (USDA Forest Service 2018). These measurements are used to estimate carbon 
stocks using a suite of empirical and statistical models (e.g., Domke et al. 2011, 2016, 2017; Jenkins et 
al. 2003; Raile 1982; Woodall et al. 2011). Plot-level estimates are scaled to the entire U.S. forest area 
using post-stratified estimators (Bechtold and Patterson 2005). Since FIA measurements taken under the 
current sampling framework are not available for the entire NGHGI (2018) estimation timeframe (1990–
2016), and because FIA plots are not re-measured annually, age transition and land-use change matrices 
are required to estimate annual carbon stock changes for the full NGHGI time period (Coulston et al. 
2015; Wear and Coulston 2015; Woodall et al. 2015). Calculations are carried out separately for forests 
remaining forests (FRF), non-forest to forest conversion (NFF), and forest to non-forest conversion (FNF). 
Thus, the carbon stock changes quantified by the NGHGI for forest ecosystems account for both land-
use change and forest dynamics (i.e., disturbance and growth). We describe each step of this method in 
more detail.  

The first step is data collection at FIA plots. The FIA program uses three levels of sampling, denoted 
Phases 1, 2, and 3 (Bechtold and Patterson 2005). In Phase 1, imagery – historically aerial photography, 
but increasingly satellite imagery – is used to stratify the U.S. land base between forest and non-forest 
and by more detailed forest characteristics. In Phase 2 sampling, measurements are taken on a nationally 
distributed set of permanent field plots that have been established at a density of approximately 1 plot 
per 6,000 acres of the U.S. land base. The Forest Service collects many data for each Phase 2 plot that is 
forested. The most important tree-level data for the NGHGI include tree status (i.e., living or dead), 
species, height, diameter, cull, and decay class. Phase 3 sampling occurs on 1/16 of Phase 2 plots and 
includes additional forest ecosystem measurements, including those focused on downed dead wood, 
litter, and soils. In the eastern United States, each FIA field plot is generally re-measured once every 5 
years on a rotating basis (i.e., roughly 20% of plots are measured each year). In the western United 
States, the measurement cycle is on the order of 10 years. The NGHGI uses only those FIA field 
measurements obtained under the nationally consistent plot design and sampling protocol that was 
introduced in 1998, with plot establishment and measurements commencing in the following years 
(Bechtold and Patterson 2005).  

Since quantities calculated at plot level must be scaled to population level (e.g., total state or national 
forest area), the Phase 1 stratification is used as a variance reduction technique, and each FIA region is 
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therefore permitted to determine the frequency and technique by which the stratification is performed 
(Bechtold and Patterson 2005). When a wall-to-wall remote sensing technique is applied, the entire land 
base is pixelated, with each pixel being assigned to one stratum. The Phase 1 stratification is performed 
without the use of ground-based data from the Phase 2 and Phase 3 FIA measurement plots. Each 
ground plot is assigned to one of the strata according to which pixel overlaps the plot center. In Texas, 
the stratification is based on canopy cover from the 2011 National Land Cover Database (NLCD; Homer 
et al. 2015).  

FIA field plots in eastern states have completed at least two full measurement cycles, so carbon flux 
estimates are based on data from re-measured plots. For a small subset of western states or parts of 
states, a complete set of re-measurements is not yet available, necessitating the incorporation of 
theoretical modeling in the estimation process (Wear and Coulston 2015). Very few states still apply 
theoretical modeling as of the most recent NGHGI (2019). The framework used to quantify national 
forest carbon stock change, summarized here briefly, is described in Annex 3.13 of the NGHGI (2018) 
and the references therein. The overarching equation for the stock change calculation based on re-
measurements (Annex 3.13 of NGHGI 2018; Wear and Coulston 2015) is reproduced here for clarity as 
Equation 2: 

Equation 2: Forest carbon stock change (NGHGI 2018; Wear and Coulston 2015) 

∆𝐶=>? = 	@(𝐴=B ∙ 	𝑇B
B∈F

∙ 	𝛿𝐶B) 

Where: 

∆𝐶=>? is change in carbon stock between time t and time t+s, where s is the re-measurement 

period; 

𝑑 are mutually exclusive land categories (e.g., FRF, NFF, FNF); 

𝐴=B is area by age class at time t for specified land category (1 x 26 vector); 

𝑇B is age transition matrix for specified land category over the time step s (26 x 26 matrix); and 

𝛿𝐶B is carbon density change by age class for specified land category (26 x 1 vector). 

The three matrices on the right hand side of Equation 2 are comprised of 26 age classes since carbon 
accumulation rates in forests vary strongly with age (Coulston et al. 2015). The 26 age classes are 
grouped by 5-year increments: 0 to <5 years, 5 to <10 years, … 120 to < 125 years, 125+ years 
(Coulston et al. 2015). Each element in the age transition matrix (𝑇B) represents the fraction of the forest 
area in the specified initial age class that transitions to the specified final age class over the time step; 
each column of 𝑇B	represents an initial age class, while each row of 𝑇B represents a final age class. 
Application of the age transition matrix (𝑇B) to the area vector (𝐴=B) serves to modify the age structure of 
the forest between time t and time t+s following observed historic trends. For forest conversion 
categories (FNF and NFF), 𝑇B is simply the identity matrix. Stock changes delineated by carbon pool are 
estimated by applying a carbon-pool-specific carbon density change vector (𝛿𝐶B). Each of the three 
matrices (𝐴=B, 𝑇B, and 𝛿𝐶B) is empirically derived at plot level from re-measurements. The three matrices 
in Equation 2 are individually expanded from plot to population level prior to multiplication. 
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Extrapolation from FIA plots to the total state or U.S. forest area makes use of the post-stratified 
estimators described by Bechtold and Patterson (2005). For example, to estimate state-level forest area, 
the plot-level estimates of forest proportion are averaged for each of the available strata; the strata 
means are then multiplied by the respective total state-level strata areas and summed. The variance 
calculations likewise take into account the various strata area weights (Bechtold and Patterson 2005), and 
these calculations underpin the sampling-based uncertainty reported by the NGHGI. The total 95% 
confidence interval for forest carbon flux reported in the NGHGI additionally includes model-based 
uncertainty, but the technique used to estimate model uncertainty is not described. The NGHGI assumes 
that the model-based and sampling-based uncertainties are independent and thus sums them together 
for total uncertainty of forest carbon flux estimates (Annex 3, sub-section 3.13 of NGHGI 2018). 

PROJECT METHODS 
To attribute uncertainty across the data, models, and estimation techniques of the NGHGI forest section, 
we replicated the national forest carbon flux estimation method for eastern Texas and then used Monte 
Carlo iterations to attribute percentage contribution for each “element of uncertainty” to the total 95% 
confidence interval for Texas forest carbon flux. Here, we present the methods applied to the 
calculations for eastern Texas, which focus on living tree biomass and standing dead trees for forest land 
remaining forest land (FRF). We provide the code and data used to develop these results in the Code 
Appendix. 

We chose to focus on eastern Texas because replicating the methods for a single region was more 
tractable given time available, the complexity of the FIA data, and our available computational resources 
for running Monte Carlo simulations, which requires estimating carbon stocks 10,000 times for every FIA 
plot included in our analysis, for each uncertainty element. Texas forest land might be considered 
representative of forest land at the national scale given the diversity of forest types in Texas: productive 
timberland in the east and less dense woodlands in the west. We initially selected Texas as the basis of 
our analysis due to the east/west differences in measurement cycles and, therefore, carbon flux 
calculation methodologies that are applied in NGHGI (2018). However, in the most recent NGHGI 
(2019), the theoretical modeling approach is no longer applied to western Texas; instead, the estimation 
for western Texas is now based on re-measurements, as for eastern Texas. We therefore simplify our 
analytical framework for computational efficiency and base our calculations on only eastern Texas. Our 
analysis attempts to re-construct the estimation technique used in NGHGI (2018) based on the 
description of this technique that is given in NGHGI (2018), Woodall et al. (2015), and the references 
therein, using FIA data. We did not have access to the code used to develop the NGHGI values 
themselves, but given feedback from NGHGI experts and similarity of our results to NGHGI values we 
believe our calculation methods are valid. 

The FIA plot data for Texas in comma-separated values (CSV) file format was obtained from the FIA 
DataMart (USDA Forest Service 2018). All analyses, including the Monte Carlo simulations, were 
performed using the R programming language (R Core Team 2018). We use data.table (Dowle and 
Srinivasan 2019) and truncnorm (Mersmann et al. 2018) R packages. Descriptions of the tables and 
variables available in the FIA Database for Phase 2 plots are given in Burrill et al. (2017). 

The subplot condition change matrix (SUBP_COND_CHNG_MTRX table from the FIA Database) 
provides the basic underlying dataset for the calculations. For eastern Texas, we use only those data 
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records corresponding to EVALID 481723. That is, we select the same data records used for eastern 
Texas that were used in the NGHGI (2018) analysis. This accounts for measurements on 3,778 FIA field 
plots in eastern Texas. In this dataset, time 1 (“previous”) measurements span 2004–2012. Roughly 20% 
of plots were measured in each of the years 2008–2012, with only 0.2% (8 plots) measured before 2008 
(1 plot in 2004, 3 plots in 2005, and 4 plots in 2007). Time 2 (“current”) measurements span 2009–2017. 
Roughly 20% of plots were measured in each of the years 2013–2017, with <0.1% (2 plots) measured in 
2009. 

The generalized Equation 2 can be applied across land use and land use change categories. For 
example, carbon stock change estimates for FRF can be sub-divided into (1) undisturbed forest 
remaining undisturbed forest and (2) FRF that has experienced a disturbance, such as cutting, weather, 
insects, disease, and fire, with separate calculations possible for each disturbance type (Wear and 
Coulston 2015). In our eastern Texas analysis, the FRF category takes into account both undisturbed and 
disturbed forest categories, as long as the land use is classified as forest at both the previous and current 
time points; that is, we include in our FRF analysis all data records with the specified EVALID for which 
the current condition (CONDID) and the previous condition (PREVCOND) are both classified as 
accessible forest land (COND_STATUS_CD=1), as determined from the condition (COND) table. For this 
timeframe in eastern Texas, there are 2,242 re-measured plots that have at least one FRF zone. We 
obtain from the TREE table all tree records available for each of the PLOT–SUBP–CONDID–PREVCOND 
combinations in the filtered SUBP_COND_CHNG_MTRX dataset. For FRF, this includes trees measured 
in either or both of the current and previous time periods (total of 120,684 tree records). 

We quantify aboveground and belowground (coarse root) biomass for all living (STATUSCD=1) and 
standing dead (STATUSCD=2 and STANDING_DEAD_CD=1) trees with diameter ≥ 1 inch. The biomass 
calculations differ depending on whether the tree is: (1) timber or woodland type; (2) living or standing 
dead; and (3) sapling (1.0 inch ≤ diameter < 5.0 inches) or non-sapling (diameter ≥ 5.0 inches). For 
timber type trees, FIA field crews measure diameter at breast height (DBH); for woodland type trees, FIA 
field crews measure diameter at root collar (DRC) and record the number of stems (WDLDSTEM attribute 
in the TREE table). Tree type is identified using the DIAHTCD attribute in the TREE table (DIAHTCD=1 
for timber trees, DIAHTCD=2 for woodland trees). For the eastern Texas FRF analysis, nearly all tree 
records correspond to the timber type: 91,083 non-sapling living timber (75.5% of all trees); 25,211 
sapling living timber (20.9%); 4,246 non-sapling standing dead timber (3.5%); 123 sapling standing dead 
timber (0.1%); 16 non-sapling living woodland (<0.1%); and 5 sapling living woodland (<0.1%). 

The equations used for the tree-level biomass calculations are available in Woodall et al. (2011). Biomass 
estimation for living non-sapling (diameter ≥ 5.0 inches) timber trees follows the component ratio 
method (Woodall et al. 2011): (1) gross volume is estimated as a function of measured diameter and 
height through application of species-specific regression coefficients (some volume equations make use 
of additional variables, but the equations applied to the tree species found in eastern Texas rely only 
upon measurements of diameter and height); (2) sound volume is estimated from gross volume by 
subtracting the observed cull (rotten and missing pieces); (3) bole biomass is calculated from sound 
volume through application of species-specific wood and bark specific gravities and a parameter 
defining bark as a percentage of wood volume; and (4) biomass by component is estimated through 
modified application of the diameter-based regression equations from Jenkins et al. (2003) and, for 
stumps, the equations from Raile (1982). Biomass estimation for living non-sapling woodland trees 
follows a similar method (Woodall et al. 2011), with only slight modification (e.g., stump biomass is not 
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estimated). The volume coefficients for woodland species vary according to the number of stems 
(WDLDSTEM attribute in TREE table). Biomass estimation for living saplings is largely based on the 
regression equations from Jenkins et al. (2003), but includes application of a “sapling adjustment factor” 
(Heath et al. 2009). Tree species is defined by the species code (SPCD) in the TREE table.  

The volume coefficients are available in Woodall et al. (2011). The other coefficients needed to calculate 
living tree biomass are available in the REF_SPECIES table from the FIA Database: stump volume 
coefficients from Raile (1982); specific gravities and bark percentages compiled by Miles and Smith 
(2009); coefficients for calculating diameter-based total aboveground biomass and biomass component 
ratios from Jenkins et al. (2003; 2004); and sapling adjustment factors from Heath et al. (2009). 

Domke et al. (2011) describe the updated method for quantifying standing dead biomass for trees with 
diameter ≥ 5.0 inches, which takes into account reduced density and structural loss associated with 
decay. The degree of decay for each standing dead tree is defined by the decay code (DECAYCD, 
possible values 1–5) available in the TREE table. Domke et al. (2011) provide density reduction factors 
for each of the five decay codes for two tree species: quaking aspen and douglas-fir. We apply the 
quaking aspen density reduction factors to all hardwood trees (SPGRPCD=1–24) and the douglas-fir 
density reduction factors to all softwood trees (SPGRPCD=25–48). The calculation of biomass in standing 
dead saplings identically follows the calculation of biomass in living saplings, with no density or structural 
loss adjustments applied. For both aboveground and belowground components for living and standing 
dead trees of all sizes and tree types, the mass of carbon is calculated as 50% of the dry biomass, 
following IPCC (2006). These calculations provide the carbon mass (pounds C tree-1) for each tree in the 
dataset. 

For each tree record, tree-level carbon (pounds C tree-1) is multiplied by TPA_UNADJ (trees acre-1) to 
obtain the plot-level carbon density (pounds C acre-1) represented by the tree. Separately for the current 
and previous time periods, the tree-based carbon densities are aggregated over all FRF area on the plot. 
In our calculation, aggregation is done over all FRF area on the plot, rather than by age class (e.g., 
Equation 2), to avoid unnecessary computational expense in the Monte Carlo analysis, details of which 
are provided below. For each plot, the previous period density is subtracted from the current period 
density, and the difference is divided by the plot-level re-measurement period in years (REMPER 
attribute from the PLOT table). In cases where there are no trees available on the plot for one of the time 
periods (e.g., non-stocked plots), the carbon density for that time period is simply zero pounds C acre-1. 
For each plot, this process gives the annual carbon density change (pounds C acre-1 year-1). 

We limit our carbon stock estimation to aboveground and belowground biomass in living and standing 
dead trees with diameter ≥ 1.0 inch. We do not include estimation of carbon in downed dead wood or 
understory vegetation to simplify the analysis.  

We use Monte Carlo analyses to estimate uncertainty of carbon stock change estimates in eastern Texas. 
We apply 10,000 Monte Carlo iterations to the derivation of the plot-level carbon density changes for 
the 2,236 FRF plots in eastern Texas that have trees in either or both of the measurement periods. To 
estimate the fraction of uncertainty associated with nine different model parameters or parameter 
groups, we repeat the full set of 10,000 iterations ten times (variously allowing one parameter group to 
vary while all other parameters are held to their mean values plus one set of iterations where all 
parameters are allowed to vary). Note that this method diverges from Equation 1 described above, and 
from methods used in the rest of this report, wherein the uncertainty contribution index for element i is 
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determined by holding element i constant and varying all other elements. We use this modified 
approach for forest biomass due to the complexity of the calculations, which results in compensating 
variation when only holding one element constant, and makes interpretation of results difficult. Each 
Monte Carlo simulation results in 10,000 iterates of carbon density change (units: pounds C acre-1 y-1) for 
each of the 2,236 eastern Texas plots. Note that for each Monte Carlo iteration, the same parameters 
are used for both measurement periods. 

We apply the output of the Monte Carlo simulation in which all parameters are allowed to vary to 
equations 1–6 from Ogle et al. (2010) to estimate the total annual carbon stock change for eastern Texas 
and the associated total modeling and sampling errors. The total eastern Texas carbon stock change for 
any individual Monte Carlo iterate (units: pounds C y-1) was calculated by multiplying, for each plot, the 
plot-level stock density change for that iterate (units: pounds C acre-1 y-1) by that plot’s area weight 
(units: acres; derivation described below) and then summing this product over all 2,242 plots (equation 1 
of Ogle et al. 2010). The 6 plots in eastern Texas that are classified as FRF but lack trees in both 
measurement periods are taken into account in these calculations; for application of Ogle et al. (2010) 
equation 1, all 10,000 iterates assume a stock density change of zero pounds C acre-1 y-1 for these 6 
plots. This process was repeated for each of the 10,000 Monte Carlo iterates. The mean annual carbon 
stock change for eastern Texas (units: pounds C y-1) was calculated by taking the average of the 10,000 
iterates of eastern Texas carbon stock change (equation 2 of Ogle et al. 2010).  

For stratification, eastern Texas is divided into three non-overlapping geographic areas known as 
“estimation units” (ESTN_UNIT) in the FIA Database: (1) National Forest Service (NFS) land, which 
accounts for 2.9% of the area of eastern Texas; (2) Southeast Texas, excluding NFS land, which accounts 
for 53.2% of the area of eastern Texas; and (3) Northeast Texas, excluding NFS land, which accounts for 
43.9% of the area of eastern Texas. In the FIA Database, each estimation unit is stratified into canopy 
cover bins, following the 2011 National Land Cover Database (Homer et al. 2015). The NFS land is 
divided into two strata: (1) 37.5% of total area has 0–98% canopy cover and (2) 62.5% has 99–100% 
canopy cover. Southeast Texas is divided into four strata: (1) 28.8% of total area has 0–10% canopy 
cover; (2) 18.1% has 11–47% canopy cover; (3) 14.2% has 48–84% canopy cover; and (4) 39.0% has 85–
100% canopy cover. Northeast Texas is divided into three strata: (1) 43.6% of total area has 0–47% 
canopy cover; (2) 17.7% has 48–84% canopy cover; and (3) 38.7% has 85–100% canopy cover. Overall, 
there are nine estimation unit–stratum combinations in eastern Texas, and each plot in eastern Texas is 
assigned to one of these nine estimation unit–stratum combinations (henceforth, simply referred to as 
“stratum”). 

In the equations of Ogle et al. (2010), the area weight assigned to each plot indicates the number of 
acres of FRF area in all of eastern Texas that is represented by that plot. The area weight for each plot 
depends both on the stratum to which the plot belongs and on the size of the FRF area on that plot. The 
total area of FRF in each stratum is reported in FIA: (1) 218,413 acres of NFS land with 0–98% canopy 
cover; (2) 397,919 acres of NFS land with 99–100% canopy cover; (3) 46,004 acres in Southeast Texas 
with 0–10% canopy cover; (4) 523,504 acres in Southeast Texas with 11–47% canopy cover; (5) 1,101,242 
acres in Southeast Texas with 48–84% canopy cover; (6) 4,405,042 acres in Southeast Texas with 85–
100% canopy cover; (7) 356,070 acres in Northeast Texas with 0–47% canopy cover; (8) 1,112,189 acres 
in Northeast Texas with 48–84% canopy cover; and (9) 3,579,941 acres in Northeast Texas with 85–100% 
canopy cover. Within a stratum, each plot in the stratum is assigned an area weight in proportion to the 
size of the plot’s FRF area, as determined by the subplot type proportion change 
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(SUBPTYP_PROP_CHNG) attribute of the SUBP_COND_CHNG_MTRX table, which details the 
proportion of the subplot that remains in the same land use category or changes category over the re-
measurement period. Area weights were calculated for each of the 2,242 eastern Texas plots that had 
any FRF area over the re-measurement period. 

The model-based variance was calculated using equation 3 of Ogle et al. (2010), and the sample-based 
variance was calculated using equations 4 and 5 of Ogle et al. (2010) using a method that accounts for 
stratification of the land base. The total variance is calculated by summing the model and sample 
variances (equation 6 of Ogle et al. 2010), which follows the practice of the NGHGI, in which the model 
and sample variances are assumed to be independent (Annex 3, sub-section 3.13 of NGHGI 2018). We 
use this combined variance to derive the total 95% confidence interval for eastern Texas carbon stock 
change associated with living and standing dead tree biomass.  

The plot-level carbon density changes and area weights are derived from re-measurements at each plot. 
Only 20% of eastern Texas ground plots are measured each year in the rotating panel design used by 
FIA, which means that it takes on the order of five years to measure the full set of plots. For eastern 
Texas, the mean re-measurement period for our dataset is 5.4 years. Thus, our estimate of annual carbon 
stock change for all of eastern Texas is not specific to a certain year, but instead is assumed to be 
representative of average annual trends for the region. 

We use the additional nine Monte Carlo simulations to probe the contribution to uncertainty from 
various model parameters. For each of these simulations, one of nine different model parameters or 
parameter groups is allowed to vary while all other parameters are held to their mean values. For each of 
these nine Monte Carlo simulations, we apply equations 1–3 of Ogle et al. (2010) to estimate the model 
variance based on variation of a single parameter or parameter group. 

Considering the nine simulations where only one parameter is allowed to vary, the sum of the individual 
model variances for these nine simulations is 0.8018 [MMT CO2]2. This is nearly identical to the model 
variance from the simulation where all parameters are allowed to vary simultaneously: 0.8013 [MMT 
CO2]2. We derived the percentage contribution to total uncertainty for each of the nine model parameter 
groups as: 100 x (scaled individual model variance) / total variance, where total variance is the sum of the 
model and sample variances from the simulation where all parameters are allowed to vary. The 
percentage contribution to total uncertainty from the sample error is calculated as: 100 x sample 
variance / total variance. The percentage contributions to uncertainty for the nine model parameter 
groups and the sampling error sum to 100%. 

The nine parameters groups we assess are briefly described below. More information is available in 
Woodall et al. (2011) and references therein, notably: Domke et al. (2011), Heath et al. (2009), Jenkins et 
al. (2003, 2004), Miles and Smith (2009), and Raile (1982). 

(1) Volume coefficients: Used to calculate gross bole volume from measurements of height and 
diameter. Directly applied only to trees with diameter ≥ 5.0 inches. Considering the full set of 
trees in this eastern Texas dataset, 81 different sets of species-specific volume coefficients are 
applied. Two coefficients are reported for each timber tree species in this dataset. Six 
coefficients are reported for each woodland tree species. 
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(2) Wood and bark specific gravities: Used to convert bole volume to biomass. Directly applied 
only to trees with diameter ≥ 5.0 inches. Considering the full set of trees in this eastern Texas 
dataset, 30 different values of species-specific wood specific gravity are applied and 27 different 
values of species-specific bark specific gravity are applied.  

(3) Bark as a percentage of wood volume: Used to convert bole volume to biomass. Directly 
applied only to trees with diameter ≥ 5.0 inches. Considering the full set of trees in the eastern 
Texas dataset, 20 different values of species-specific bark percentage are applied. 

(4) Stump volume coefficients: Used to quantify the volume of the tree stump from measured 
diameter. Directly applied only to timber trees with diameter ≥ 5.0 inches. Considering the full 
set of trees in this eastern Texas dataset, 6 different sets of species group-specific stump volume 
coefficients are applied. 

(5) Total aboveground biomass following Jenkins et al. (2003): Total aboveground biomass 
calculated from measured diameter using regression equations. Used to estimate an adjustment 
factor applied in the Component Ratio Method. Considering the full set of trees in this eastern 
Texas dataset, 7 different sets of species group-specific coefficients are applied. A set of 
coefficients includes 2 coefficients. When this parameter is allowed to vary, the prescribed 
variance (error bar) is applied directly to the calculated diameter-dependent biomass for each 
tree, rather than on the coefficients used to calculate the biomass (see description in Table T-1). 

(6) Component ratio coefficients: Used in calculation of component ratios (i.e., ratio of tree 
component biomass to total aboveground biomass) following diameter-dependent regression 
equations of Jenkins et al. (2003). Two different sets of component ratio coefficients are applied 
(1 set for all hardwoods and 1 set for all softwoods). For timber trees with diameter ≥ 5.0 inches, 
a set of coefficients includes 8 coefficients: 2 each for foliage, coarse roots, stem wood, and 
stem bark. For woodland trees and saplings, a set of coefficients includes 4 coefficients: 2 each 
for foliage and coarse roots. 

(7) Sapling adjustment factor: Used only for saplings to account for differences in the volume-based 
biomass estimation method of the Component Ratio Method and the Jenkins et al. (2003) 
diameter-based regression equations for biomass estimation. For the eastern Texas dataset, 22 
different values of species group-specific sapling adjustment factors are applied. 

(8) Density reduction factor: Scaling factor used to account for reduced density from decay of 
standing dead trees. For the eastern Texas dataset, 10 different values of density reduction 
factor are applied (depending on degree of decay and whether tree is hardwood or softwood). 

(9) Structural loss adjustment factors: Scaling factor used to account for structural loss of standing 
dead trees. For the eastern Texas dataset, 5 different sets of structural loss adjustment factors 
are applied (depending on degree of decay of the tree). 

The distribution type and coefficient of variation (standard deviation as a percentage of the mean) 
assigned to each of the variable parameters are summarized in Table T-1. Parameters for which a 
literature-based or empirically derived estimate of the coefficient of variation could not be developed 
(i.e., volume coefficients, stump volume coefficients, and structural loss adjustment factors) were 
assigned a coefficient of variation of 10%, which matches the magnitude of the literature or empirically 
based coefficients of variation for many of the other parameters. In the Discussion section, we provide 
the results of a sensitivity analysis focused on the coefficient of variation prescribed for the volume 
coefficients. 

In our computational framework, the random deviates of any variable parameter in a Monte Carlo 
simulation are not separately generated for each tree, but instead are generated around each available 
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mean value of the parameter. In other words, all trees that are assigned the same mean value of a given 
parameter when that parameter is not allowed to vary are likewise assigned the same 10,000 iterates of 
that parameter when that parameter is allowed to vary. (The total aboveground biomass based on 
Jenkins et al. (2003) is an exception to this framework, as described in Table T-1.) This framework was 
selected for its computational efficiency and mimics the imposition of a high degree of positive 
covariance between trees of the same species or species group and also between the two time periods. 
However, this framework might lead to an underestimate of model uncertainty. Furthermore, we assume 
independence of all parameters, even within parameter groups, recognizing that this might upwardly 
bias our model uncertainty estimate. 

We restrict the allowed values of some parameters by applying a truncated normal distribution; for 
example, we do not allow specific gravities to be negative (Table T-1). We impose only one other 
restriction in the Monte Carlo simulations: for each Monte Carlo iteration of component ratio 
coefficients: (1) if the resulting foliage ratio + stem ratio + bark ratio < 0.6, then we scale up each of 
these ratios so that the sum is 0.6 or (2) if the resulting foliage ratio + stem ratio + bark ratio > 0.9, then 
we scale down each of these ratios so that the sum is 0.9. We institute these thresholds in order to force 
the branch ratio to be in the range 0.1–0.4 (because the branch ratio is the residual of 1 - (stem ratio + 
bark ratio + foliage ratio) in Jenkins et al. (2003)). This restriction is only applied for timber trees with 
diameter ≥ 5.0 inches since it is only these trees for which ratios are calculated for all of the components. 

Table T-1: Input parameters for contribution index analysis of forest biomass 

Group number Variable parameter(s) Probability distribution Coefficient of 
variation (%) a 

1 Bole gross volume coefficients Normal 10% 

2 Wood and bark specific gravities Truncated normal with lower limit of 0 10% b 

3 Bark as a percentage of wood volume Truncated normal with lower limit of 0 5% c 

4 Stump volume coefficients Normal 10% 

5 Total aboveground biomass based  
on Jenkins et al. (2003) 

Truncated normal with lower limit of 0 d 

6 Component ratio coefficients Normal 10% e 

7 Sapling adjustment factor Truncated normal with lower limit of 0 30% f 

8 Density reduction factor Truncated normal with lower limit of 0 
and upper limit of 1 

4% g 

9 Structural loss adjustment Truncated normal with lower limit of 0 
and upper limit of 1 

10% 

a) Coefficient of variation is the standard deviation of the parameter as a percentage of the parameter mean. 
b) Forest Products Laboratory (2010). 
c) Estimated from 95% confidence intervals for bark as a percentage of wood volume for five different species given 
in Marden et al. (1975). 
d) Table 5 of Jenkins et al. (2003) provides the 10th and 90th percentiles of the percentage of predicated biomass for 
each of 10 species groups (7 of which are present in the eastern Texas dataset). For each of the 7 species groups, we 
calculated the mean of the absolute values of the 10th and 90th percentiles and, from this, derived the standard 
deviation of the percentage of predicted biomass. For each tree in the species group, we applied this standard 
deviation in the generation of the 10,000 deviates of total aboveground biomass for each tree. 
e) Coefficient variance was derived from summary statistics in tables 6 and 7 from Jenkins et al. (2003), using the 
parameter variance equation for linear regression with homoscedastic errors, taking the natural log of regression 
equation.  
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f) For all 852 trees in the eastern Texas dataset in the current measurement period that have diameter = 5.0 inches, 
we calculated the sapling adjustment factor by dividing the biomass based on the Component Ratio Method by that 
based on the method of Jenkins et al. (2003) (see Heath et al. 2009). We grouped the trees into species groups 
according to Table 3 of Heath et al. (2009) and estimated the mean and standard deviation of the sapling adjustment 
factors for each species group. We estimated the coefficient of variation for each species group; the mean of these 
coefficients of variation is about 30%. 
g) Estimated from data in Table 6 of Harmon et al. (2011). 

The NGHGI (2018) reports for 2016 a national total net sequestration of 420.2 MMT CO2 from 
aboveground biomass (315.3 MMT CO2), belowground biomass (65.7 MMT CO2), and dead wood (39.2 
MMT CO2). These figures include both understory vegetation and downed dead wood, which we do not 
include in our analysis. To estimate the 95% confidence interval for national forest carbon stock change, 
we calculate for the percentage error for the eastern Texas analysis (100 x [0.5 x range of 95% 
confidence interval for eastern Texas] / mean carbon stock change for eastern Texas) and then apply this 
percentage error to the national mean carbon stock change reported by the NGHGI (2018). We quantify 
the contribution to uncertainty in units of MMT CO2 for each of the nine model parameters and the 
sampling error by multiplying the percentage contribution to uncertainty for each uncertainty element by 
the range of the 95% confidence interval (97.5th percentile minus 2.5th percentile) for national carbon 
stock change. We report our results in aggregate across living tree biomass and standing dead tree 
carbon pools. 

RESULTS 
We estimate a net sequestration in aboveground and belowground living tree biomass and standing 
dead trees for eastern Texas of 5.3 MMT CO2. This corresponds to the order of magnitude for 2016  
(~2 MMT CO2) suggested by the reported change in aboveground biomass for live trees in eastern 
Texas (Dooley 2018); we expect some discrepancy based on the differences in carbon pools considered 
(Dooley (2018) does not consider belowground biomass or standing dead trees) and the mis-match in 
years between our analysis and the Dooley (2018) analysis. As noted above, our analysis is not specific to 
one year but rather is an average over all available measurement years. Based on the Monte Carlo 
analysis where all parameters are allowed to vary, we estimate a model variance of 0.80 [MMT CO2]2, a 
sample variance of 2.55 [MMT CO2]2, and a total combined variance of 3.35 [MMT CO2]2. The 95% 
confidence interval for eastern Texas carbon stock change associated with living and dead tree biomass 
is -8.9 MMT CO2 to -1.7 MMT CO2, where negative values indicate sequestration. The total percentage 
error for eastern Texas (100 x [0.5 x range of 95% confidence interval] / mean carbon stock change) is 
67.9%. 

The 95% confidence interval for the national carbon stock change, calculated by applying the 
percentage error from eastern Texas to the national mean carbon stock change (-420.2 MMT CO2) 
reported by the NGHGI (2018), is -705.6 MMT CO2 to -134.8 MMT CO2, accounting only for changes in 
the living tree biomass and standing dead tree carbon pools. In the Discussion section, we discuss the 
appropriateness of applying the percentage error derived for eastern Texas to the estimation of the total 
national 95% confidence interval. 

The contributions to uncertainty for the nine model parameters and sample error are shown in Table T-2. 
The total contribution to uncertainty for this forest ecosystem carbon pool is 571 MMT CO2. The sample 
error is the dominant contributor to uncertainty for this carbon pool. Among the model parameters, the 
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volume coefficients and specific gravities make the largest contributions to uncertainty, followed by the 
biomass component ratio coefficients, sapling adjustment factor, and total aboveground biomass based 
on the allometric equations of Jenkins et al. (2003). Negligible uncertainty is contributed by bark as a 
percentage of wood volume, stump volume coefficients, density reduction factors, and structural loss 
adjustment factors.  

Table T-2: RESULTS - Contributions to uncertainty for aboveground, belowground, and standing 
dead biomass, scaled to national level 

Uncertainty element Contribution to uncertainty (%) Contribution to uncertainty 
(MMT CO2e) 

Sample error 76.1% 434.3 
 

Bole gross volume coefficients 13.6% 77.7 

Wood and bark specific gravities 9.5% 54.2 

Bark as a percentage of wood volume 0.0% 0.2 

Stump volume coefficients 0.0% 0.0 

Total aboveground biomass based on 
Jenkins et al. (2003) 

0.1% 0.7 

Component ratio coefficients 0.4% 2.2 

Sapling adjustment factor 0.3% 1.6 

Density reduction factor 0.0% 0.0 

Structural loss adjustment 0.0% 0.1 

 

The NGHGI (2018) reports the 95% confidence interval for the sum of carbon stock changes from forest 
ecosystems for FRF for the United States (-818.7 MMT CO2 to -324.7 MMT CO2), but does not report the 
confidence intervals by forest carbon pool. Combining the results of our eastern Texas-based analyses 
for living tree biomass and standing dead trees (this section), litter (Section 2.2), and soil (Section 2.3), 
we find a percentage error of 53.3% for FRF, which is similar in magnitude to that reported by the 
NGHGI (2018): 43.2%. Applying our percentage error to the national mean net carbon stock change for 
2016 for all forest ecosystem carbon pools (-571.6 MMT CO2) reported by NGHGI (2018), we estimate a 
95% confidence interval of -876.4 MMT CO2 to -266.8 MMT CO2, which compares well to that reported 
by NGHGI (2018), providing confidence in our overall estimate of uncertainty.  

DISCUSSION 
For our uncertainty analysis of carbon stock changes in aboveground and belowground living tree 
biomass and standing dead trees, we have attempted to re-create the carbon estimation framework 
used by the NGHGI (2018) insofar as we understand it from the descriptions provided in NGHGI (2018), 
Woodall et al. (2015), and the references therein. We have introduced some simplifications; for example, 
we do not consider forest age class, and we do not attempt to estimate the carbon stock changes in 
eastern Texas for a given year. Instead, we assume that carbon stock changes estimated from the re-
measurements are representative of average annual trends for the region. Our estimation does not 
account for any nuances in the NGHGI estimation framework that are not specified in the 
methodological description provided in the NGHGI (2018). Furthermore, in light of the computationally 
intensive nature of the Monte Carlo framework that we use to estimate uncertainty and contributions to 
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uncertainty from individual uncertainty elements, it was necessary to choose a subset of FIA ground plots 
as the input to our carbon model, as using the full set of national ground plots would have been 
intractable given available computational resources.  

As described previously, we initially chose to analyze Texas because of the different calculation 
methodologies applied to the eastern and western parts of the state; however, because a full set of re-
measurements are now available in western Texas and are used in the most recent NGHGI (2019) 
estimates, we chose to focus our efforts on only eastern Texas as a tractable subset of ground plots. 
Using our computational framework applied to the re-measured FIA ground plots in eastern Texas, we 
calculate a mean annual sequestration rate for eastern Texas FRF as 1.11 metric tons CO2 [ha of FRF 
land]-1, taking into account carbon sequestration associated with aboveground and belowground living 
tree biomass and standing dead trees. This is the same order of magnitude as the national mean 
sequestration rate for 2016 for FRF: 1.44 metric tons CO2 [ha of FRF land]-1. The national estimate 
additionally accounts for downed dead wood and understory vegetation, which is not included in our 
estimate for eastern Texas. Assuming that downed dead wood and understory vegetation in eastern 
Texas sequester carbon over this time period, then the estimated sequestration rate for eastern Texas is 
likely an underestimate. The comparable mean sequestration rate between eastern Texas and the United 
States is further evidence that eastern Texas is a representative region for national forest carbon flux.  

Our forest carbon model is consistent with that used for the full United States, but the species 
distribution of the trees in the dataset is specific to eastern Texas. The variances of the model 
parameters, when based on literature, are likewise specific to that mix of trees (see Table T-1 for sources 
and assumptions on parameter variance). For our uncertainty analysis, we are most interested in ranking 
the various uncertainty elements in terms of their contribution to total uncertainty. Given that the 
rankings of the various parameter contributions are so pronounced (56.8% of model uncertainty is 
associated with the volume coefficients and 39.7% with specific gravities), it is not likely that a different 
species distribution would significantly alter the rankings. 

As shown in the Results section, the total relative uncertainty, including both model and sample errors, 
that we calculate for eastern Texas FRF (53.3%, accounting for uncertainty associated with the estimation 
of carbon stock changes for aboveground and belowground biomass in living and standing dead trees, 
litter, and soil) compares well to that at the national level (43.2%) reported by the NGHGI (2018). Again, 
the national estimate additionally accounts for uncertainty associated with estimating carbon stock 
changes in downed dead wood and understory vegetation. The similarity in the total percentage 
uncertainties for eastern Texas and the United States suggests that eastern Texas uncertainty is 
representative of forest carbon uncertainty in the United States and it is therefore reasonable to apply 
the percentage error estimated for eastern Texas in our analysis to derive the 95% confidence interval 
for the United States. Importantly, our method for estimating uncertainties for litter and soil carbon 
fluxes required assumptions in assigning the covariance in carbon stocks between the two time points, 
with the result being that we indirectly set the variance of the carbon flux by assumption. If we double 
the assumed variances for both the litter and soil carbon fluxes, the total percentage uncertainty for 
eastern Texas FRF increases to 60.6%. Quadrupling these variances results in a total percentage 
uncertainty of 73.0%. Thus, the total percentage uncertainty for eastern Texas, even under these strong 
increases in uncertainty for the litter and soil carbon fluxes, still matches the order of magnitude of the 
national uncertainty. 



 

Reducng Climate Policy Risk Technical Appendix  17 

Our contribution analysis finds that the coefficients used to calculate gross bole volume from measured 
height and diameter (for trees with diameter ≥ 5.0 inches) provide the largest contribution to modeling 
uncertainty for this carbon pool (aboveground and belowground biomass of living and standing dead 
trees) and provide the second largest contribution to uncertainty for this pool when sampling error is 
also considered. Because of a lack of information regarding the magnitude of this error bar, we assigned 
a generic coefficient of variation of 10% for these parameters, which is in line with the coefficients of 
variation assigned to many of the other modeling parameters (Table T-1). However, due to the 
importance of this parameter in terms of uncertainty contribution, we performed additional Monte Carlo 
simulations to determine how the magnitude of this error bar affects the overall uncertainty estimation 
and contribution analysis.  

Test simulations show that the ranking of the model parameters in terms of uncertainty contribution is 
consistent between simulations using 500 iterations and those using 10,000 iterations, with only slight 
differences in the percentage contributions. For example, the simulations using 10,000 iterations 
suggest that the volume coefficients account for 56.8% of model error and the specific gravities account 
for 39.7% of model error; the simulations using 500 iterations suggest contributions of 53.9% and 42.3% 
for the volume coefficients and specific gravities, respectively. Because we are predominantly interested 
in how the error bar assigned to the volume coefficients affects the ranking of the model parameters in 
terms of uncertainty contribution, we base our sensitivity analysis on Monte Carlo simulations that use 
500 iterations for the benefit of computational efficiency.  

In these sensitivity simulations, only the coefficient of variation for the volume coefficients is modified 
relative to the main set of Monte Carlo simulations (in addition to the smaller number of iterations used). 
We run sets of simulations variously applying a coefficient of variation to the volume coefficients of 5%, 
10% (as in the main set of simulations in the Results section), and 20%. To maintain consistency among 
the sensitivity simulations, we re-ran the main uncertainty simulations (i.e., 10% coefficient of variation as 
presented in the Results section) using 500 iterations.  

For the 500-iterate simulations, the sum of the model variances for the simulations where only one 
parameter varies is greater than the total model variance derived from the Monte Carlo simulation where 
all parameters vary. For each set of simulations, we divided the total model variance derived from the 
Monte Carlo simulation where all parameters vary by the sum of the nine individual model variances to 
estimate a scaling factor for the individual model variances. The scaling factors are: (1) 0.860 for the 
analysis that assigns a coefficient of variation of 5%; (2) 0.913 for the analysis that assigns a coefficient of 
variation of 10%; and (3) 0.986 for the analysis that assigns a coefficient of variation of 20%. For each set 
of simulations, we derived the percentage contribution to total uncertainty for each of the nine model 
parameter groups as: 100 x (scaled individual model variance) / total variance, where total variance is the 
sum of the model and sample variances from the simulation where all parameters are allowed to vary. 
The percentage contributions to uncertainty for the nine model parameter groups and the sampling 
error sum to 100%. 

The results of this sensitivity analysis (Table T-3) show that the magnitude of the error bar applied to the 
volume coefficients has a significant impact (1) on the overall 95% confidence interval for this 
aggregated forest carbon pool and (2) on the magnitude of the uncertainty contribution from the volume 
coefficients. The error bar applied to the volume coefficients also affects the ranking of the various 
uncertainty elements in terms of percentage contribution to uncertainty. For the uncertainty analysis in 
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which the coefficient of variation for the volume coefficients is assigned as 10%, error associated with the 
volume coefficients accounts for 53.9% of modeling uncertainty, followed in importance by the wood 
and bark specific gravities (42.3%) and the component ratio coefficients (1.7%). When a coefficient of 
variation of 5% is applied, the contributions to modeling uncertainty are: wood and bark specific 
gravities (71.1%), volume coefficients (22.6%), and component ratio coefficients (2.9%). When a 
coefficient of variation of 20% is applied, the contributions to modeling uncertainty are: volume 
coefficients (82.4%), wood and bark specific gravities (16.2%), and component ratio coefficients (0.7%). 
Volume coefficient contribution at 20% coefficient of variation still does not overtake sampling error 
contribution, which is still nearly twice as large as volume coefficient contribution. 

Table T-3: Sensitivity of uncertainty results to error bar used for volume coefficients 

Coefficient of 
variation for volume 
coefficients (%) 

Contribution of volume 
coefficient error to total 
uncertainty for this carbon 
pool (%) 

Uncertainty 
contribution from 
volume coefficients 
(MMT CO2) 

95% confidence interval for United States 
Lower bound 
(MMT CO2) 

Upper bound 
(MMT CO2) 

95% error bar, 
percentage of 
mean (%) 

5% 3.2% 16.9 -687.7 -152.7 63.7 

10% a 12.1% 68.1 -701.9 -138.5 67.0 

20% 37.1% 248.1 -754.8 -85.6 79.6 

a) These results correspond to the main uncertainty analysis presented in the Results section, but have been derived 
from simulations run with 500 iterations rather than 10,000 iterations in order to maintain consistency with the other 
sensitivity simulations. The reduction from 10,000 iterations to 500 iterations in the Monte Carlo simulation has little 
impact on the estimated 95% confidence interval for the United States. The percentage contribution to total 
uncertainty for this carbon pool from volume coefficient error is slightly lower when based on the simulations using 
500 iterations (12.1%) than when based on the simulations using 10,000 iterations (13.6%), resulting in a lower 
uncertainty contribution in terms of MMT CO2 (68.1 MMT CO2 here compared to 77.7 MMT CO2 as in Table T-2). The 
volume coefficient ranks as the highest contributor to uncertainty among all model parameters regardless of whether 
500 or 10,000 iterations are applied. 

In our analysis, we do not capture all errors associated with the estimation of carbon stock change in this 
aggregated forest carbon pool (aboveground and belowground carbon in living and standing dead 
trees). For example, we do not consider errors associated with (among others): (1) the stratification 
applied to the land base; (2) measurement errors; (3) expansion factors, such as the TPA_UNADJ variable 
from the FIA Database; or (4) model structure (e.g., the impact on carbon stock estimates associated 
with the transition to the volume-based Component Ratio Method for tree biomass from the allometric 
regression models of Jenkins et al. (2003) is considered by Domke et al. (2012)). However, an advantage 
of our analysis presented here is that we use a consistent approach across LULUCF sub-sectors (i.e., 
where possible, Monte Carlo simulations combined with contribution index analysis). Our focus on 
quantifying uncertainty contributions from individual uncertainty elements allows us to rank the 
contributions to uncertainty across sub-sectors. 

A significant challenge for both our analysis of uncertainty and for the main carbon stock change 
calculations undertaken by the NGHGI is the availability of species- and region-specific input to the 
carbon models. Many of the data used to derive the necessary parameter values are from research 
published many decades ago. In such cases, the underlying datasets used to inform the published 
summary statistics are no longer available, making it difficult to estimate an error bar for the modeling 
parameters. The results of our sensitivity analysis show that the magnitude of the error bar applied to the 
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modeling parameters can significantly affect the uncertainty estimation and alter the relative importance 
of various parameters with respect to uncertainty contributions. 

Furthermore, many of the modeling parameters used in the estimation of tree carbon are species 
specific; however, when data is not available for a given species or region, data for a similar species or 
species group is assigned (e.g., Miles and Smith 2009). For other parameters, data are presented for 
broad species groups (e.g., component ratio coefficients are given only for hardwood and softwood 
categories).  

In our Monte Carlo framework, it is possible that the number of parameters that are allowed to vary 
within a parameter group has an impact on the estimated modeling uncertainty contributed by that 
group and therefore might have an impact on the ranking among the parameter groups. For example, 
we find that the volume coefficients contribute the largest uncertainty among the nine sets of parameter 
groups that we analyze. For the eastern Texas dataset that we analyze, there are 81 different species-
specific sets of volume coefficients applied in the calculation. For nearly all trees in this dataset, a “set” 
of volume coefficients includes two coefficients with bole-wood gross cubic-foot volume calculated 
according to the equation: volume = coefficient1 + [coefficient2 x diameter2 x height]. Any tree in the 
dataset that is assigned the same mean values for the set of coefficients is likewise assigned the same 
10,000 iterates of the two coefficients. On one hand, this aspect of the framework might limit the overall 
variation contributed by this parameter since all “alike” trees are assigned the same 10,000 iterates for 
the volume coefficients. On the other hand, the fact that there are 81 different sets of coefficients that 
are allowed to vary in the calculation might increase the overall variation attributed by this parameter 
group in relation to other parameter groups where there are fewer sets of coefficients/parameters that 
are allowed to vary. This is not necessarily a confounding artifact of the calculation, though, because 
even if the variance is larger because more parameters are allowed to vary, this is a valid reason to focus 
efforts on refinement of one parameter group rather than another. Finally, stratification of the land base 
is used as a variance reduction technique (Bechtold and Patterson 2005). The use of a different 
stratification framework (e.g., larger number of canopy cover bins) can result in a different magnitude of 
sampling error than what is calculated for eastern Texas using the NLCD stratification. 

2.2 Carbon stock change in forest litter 

NGHGI METHODS 
Litter is a pool of carbon comprised of duff, humus, and fine woody debris that is found on the forest 
floor above the soil. The NGHGI defines litter to include woody fragments with diameters up to 7.5cm 
(NGHGI 2018). The NGHGI uses plot-level estimates of litter carbon, collected through the Forest 
Inventory and Analysis (FIA) program, and then scales plot estimates to total U.S. forest area to estimate 
annual litter carbon stocks. Annual litter CO2 flux is calculated as the litter carbon stock change between 
year t and t-1. FIA has litter measurements for 1/16 of FIA plots starting in 2011 (Domke et al. 2016). At 
each sample point, multiple litter thickness measurements are taken, and the litter layer within sampling 
frames are removed for lab analysis to determine carbon content (Domke et al. 2016). Since 96% of FIA 
plots do not have litter samples, Domke et al. (2016) developed a machine learning model to predict 
litter carbon stocks on un-sampled plots, using predictive variables like latitude, longitude, elevation, 
forest type, stand age, site index, aboveground live tree carbon, and others. The model was iteratively 
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trained on 70% of the FIA litter plot data, and tested on the remaining 30%. Model predictions were 
combined with a randomly generated variable to represent sample error. Plot estimates are then scaled 
by area weights to cover total forest area, similar to other forest carbon pools. 

PROJECT METHODS 
We estimate the 95% confidence interval for litter carbon stock change that accounts for modeling error. 
We are not able to replicate the method described by Domke et al. (2016) because their data is not yet 
available in FIA and recreating the Random Forests machine learning model described above was 
outside the scope of our project. Instead, we use a simplified method using summary data from Domke 
et al. (2016). A significant shortcoming of our approach is that it requires assuming the covariance of 
litter carbon stocks between two time periods, which means that we are setting the variance of the CO2 
flux by assumption. Additional reporting of uncertainty by carbon pool in the NGHGI would be useful to 
avoid the need for this assumption. 

Similar to other forest carbon pools, our estimate is informed by FIA data for eastern Texas. We describe 
the FIA program and database (USDA Forest Service 2018) in detail in Section 2.1 above. For the litter 
carbon analysis, we use the FIA data only to identify the distribution of forest-type groups in eastern 
Texas; thus, our estimates of national litter carbon stock change might be biased by our focus on eastern 
Texas since the national forest-type distribution is not identical to that in Texas. We focus our analysis on 
forest land remaining forest land (FRF) area.  

For the FRF analysis, we select all eastern Texas Phase 2 ground plots in the subplot–condition change 
matrix (SUBP_COND_CHNG_MTRX table of the FIA Database) that correspond to EVALID 481723 and 
have at least one geographic area that is FRF over the re-measurement interval (that is, the geographic 
area has COND_STATUS_CD=1, indicating accessible forest land, in both the previous and current 
measurement periods). Of the 3,778 eastern Texas FIA ground plots having EVALID 481723, 2,242 plots 
have at least one geographic area that is FRF. For each of these plots, we identify the forest type for the 
previous measurement period using the FORTYPCD attribute in the condition (COND) table. FIA 
aggregates the individual forest types defined by FORTYPCD into supergroups (Appendix D of Burrill et 
al. 2017). For example, the willow forest type (FORTYPCD=704) is assigned to the elm–ash–cottonwood 
supergroup (code 700). In the FRF dataset for eastern Texas, 37 individual forest types (FORTYPCD 
values) are represented in the previous measurement period, corresponding to 11 FIA forest-type 
supergroups: longleaf–slash pine, loblolly–shortleaf pine, other eastern softwoods, oak–pine, oak–
hickory, oak–gum–cypress, elm–ash–cottonwood, other hardwoods, woodland hardwoods, exotic 
hardwoods, and non-stocked. 

Smith et al. (2003) aggregate the forest-type groups available in the FIA Database into a smaller set of 
forest types. For the south central region of the United States, which includes Texas, Smith et al. (2003) 
assign seven forest-type groups (their Table 1). We further aggregate the Smith et al. (2003) forest-type 
groups to achieve the four forest-type groups for the southern United States for which Domke et al. 
(2016) report summary statistics for litter carbon stocks (their Table 1): non-stocked, hardwood, pine, and 
mixed conifer. The classification key that we use is shown below in Table T-4. Forest types 
corresponding to the FIA supergroups woodland hardwoods, exotic hardwoods, and other hardwoods 
exist in the eastern Texas dataset but are not explicitly listed in Table 1 of Smith et al. (2003) for the 
south central region of the United States. We assign these forest types to the over-arching hardwood 
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group. The eastern redcedar forest type (FORTYPCD=171, belonging to FIA supergroup “other eastern 
softwoods”) could conceivably be assigned to either the pine or mixed conifer groups of the Domke et 
al. (2016) classification. Because this dataset lacks any other forest types that fall into the mixed conifer 
group, we assign the eastern redcedar to the mixed conifer group, thereby providing increased diversity 
in the forest type distribution. For the northeast, northern prairie states, south central, and southeast 
regions of the United States, Smith et al. (2003) define an oak–pine forest type that is composed solely 
of the oak–pine FIA supergroup; however, for the northern lake states, Smith et al. (2003) define a pine 
forest type by combining the oak–pine FIA supergroup with all other pine groups. We follow this 
guidance and assign oak–pine to the overarching pine group. 

For the previous measurement period for each plot, considering only the FRF parts of the plot, the 
fraction of the plot area that belongs to each of the four aggregated forest-type groups is calculated 
using the subplot type proportion change (SUBPTYP_PROP_CHNG) attribute from the 
SUBP_COND_CHNG_MTRX table. Considering the entire FRF portion of the plot, the predominant 
forest type (i.e., the forest type accounting for the largest fraction of plot area) is assigned as the plot-
level forest type for the previous measurement period. In a limited number of cases (9 plots in the 
previous measurement period), multiple forest types account for identical fractions of the plot area. In 
such cases, we institute the preferred order of assignment: pine > hardwood > mixed conifer > non-
stocked. That is, we preferentially assign the plot as stocked forest rather than non-stocked forest; 
among the stocked forest types, we preferentially assign the forest type with the smallest standard 
deviation for litter carbon stock as given by Domke et al. (2016). 

To estimate the model-based error associated with the annual change in litter carbon stock for FRF, we 
apply Monte Carlo iterations to the set of FRF plots in eastern Texas. For each plot, we generate 
distributions of litter carbon stock for both the previous period and the next period (previous period plus 
one year), applying the same forest type for each of the two time points. We assume that the plot-level 
carbon stocks in the two periods are jointly distributed with positive covariance and assume carbon 
stocks are normally distributed. To generate the distribution for the previous period, we apply the mean 
carbon stock by forest type given by Table 1 of Domke et al. (2016) for the southern United States: 18.96 
metric tons CO2 ha-1 for non-stocked forest; 27.43 metric tons CO2 ha-1 for pine forest; 28.82 metric tons 
CO2 ha-1 for hardwood forest; and 57.02 metric tons CO2 ha-1 for mixed conifer forest.  

For each plot, we apply the same predominant forest type in the next period (previous period plus one 
year) that we apply in the previous period. The next period litter carbon stock distribution is derived by 
applying the mean value from Domke et al. (2016) for the given forest type, but the mean value in the 
next period is increased by 0.06 metric tons CO2 ha-1, so that the sequestration rate for the plot between 
the previous and next periods will be identical to the national average litter carbon sequestration rate of 
0.06 metric tons CO2 ha-1 y-1. We estimated the national average annual carbon flux per ha 
(sequestration of 0.06 metric tons CO2 ha-1 y-1) from forest litter for FRF by dividing the total national 
carbon sequestration for 2016 for FRF litter (16.1 MMT CO2 y-1; Table 6.10 of NGHGI 2018) by the total 
national FRF area in 2016 (272,260,000 ha; Table 6.12 of NGHGI 2018). The total FRF area figure 
accounts for managed forest land in the conterminous United States and southeastern and south central 
coastal Alaska. 

For each forest type, we assign the variance of the litter carbon stock as the modeling mean-squared 
error for litter carbon reported by the NGHGI (Annex 3, sub-section 3.13): 1050 [metric tons CO2 ha-1]2. 
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We apply a very high level of covariance between the litter carbon stocks in the two periods; that is, we 
assume a covariance that is 0.999 times the magnitude of the variance. Note that by choosing the 
covariance between stocks over time we are choosing the variance of litter CO2 flux – a shortcoming of 
our method and a reason why reporting carbon pool-level uncertainties in the NGHGI would be useful. 

We used the R programming language (R Core Team 2018) for analysis and made use of the “rmvnorm” 
function from the “mvtnorm” package (Genz et al. 2019). We generated 10,000 pairs of litter carbon 
stock for the previous and next periods for each plot. Element-by-element subtraction (next period 
carbon stock minus previous period carbon stock) results in a plot-level distribution of annual carbon flux 
(metric tons CO2 ha-1 y-1). With this formulation, positive values indicate carbon sequestration.  

We apply equations 1–3 from Ogle et al. (2010) to estimate the regional annual litter carbon stock 
change (i.e., the litter carbon stock change for all of eastern Texas) and the associated modeling error. 
First, the regional litter carbon stock change for any individual Monte Carlo iterate (units: metric tons 
CO2 y-1) was calculated by multiplying, for each plot, the plot-level stock change for that iterate (units: 
metric tons CO2 ha-1 y-1) by that plot’s area weight (units: ha) and then summing this product over all 
plots (equation 1 of Ogle et al. 2010). This process was repeated for each of the 10,000 Monte Carlo 
iterates. As described in Section 2.1, each plot in eastern Texas is assigned to one of nine estimation 
unit–stratum combinations (here, simply referred to as “stratum”). For this analysis, each plot in a given 
stratum is assigned the same area weight. The area weight for each plot indicates the total area (ha) of 
eastern Texas FRF land represented by the plot. The area weights for the plots in each stratum were 
calculated by dividing the area (ha) of FRF land in that stratum by the number of FRF-containing plots in 
that stratum. Secondly, the mean annual litter carbon stock change for eastern Texas was calculated by 
taking the average of the 10,000 regional stock change iterates (equation 2 of Ogle et al. 2010). We 
assume that the derived annual flux is representative of the contemporary era and therefore take this flux 
as an estimate for 2016. Finally, the model-based variance (equation 3 of Ogle et al. 2010) was 
calculated using the outputs of equations 1 and 2. In this analysis, the annual sequestration rate for every 
plot is forced to the national-mean sequestration rate; therefore, we are unable to calculate a sampling 
error associated with litter carbon flux. 

We derive the 95% confidence interval from the distribution of 10,000 iterates. This process provides the 
95% confidence interval for annual litter carbon stock change for FRF in eastern Texas. To estimate the 
95% confidence interval for litter carbon stock change for FRF in the entire United States, we apply the 
percentage errors for eastern Texas to the mean U.S. litter carbon stock change for 2016 from NGHGI 
(2018). The total contribution to uncertainty is calculated as the range of the 95% confidence interval for 
the United States (upper bound minus lower bound). 
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Table T-4: Classification key used to assign forest types from the FIA Database to those used  
by Domke et al. (2016) for litter carbon stocks 

Forest type from FIA Database Forest type from Smith et al. (2003) Forest type for our litter analysis 

Oak–Gum–Cypress 
Bottomland hardwood a 

Hardwood 

Elm–Ash–Cottonwood 
Oak–Hickory Upland hardwood a 

Woodland hardwoods Not indicated 

Exotic hardwoods Not indicated 

Other hardwoods Not indicated 

Longleaf–Slash Pine 
Pine b 

Pine Loblolly–Shortleaf Pine 
Oak–Pine Oak–Pine 

Other eastern softwoods Not indicated Mixed conifer 

Nonstocked Nonstocks Nonstocked 

a) Smith et al. (2003) additionally assign the FIA group Maple–Beech–Birch to upland hardwoods and the FIA group 
Aspen–Birch to bottomland hardwoods. The eastern Texas dataset has neither of these FIA groups.  
b) Smith et al. (2003) divide the pine group into naturally occurring pine and planted pine groups, but we combine 
these into a single group here. 

RESULTS 
We estimate a mean litter carbon sequestration for eastern Texas FRF land of 0.29 MMT CO2 (over 1-
year time step) based on the Monte Carlo analysis using 10,000 iterations. This is the expected stock 
change considering that (1) we force the sequestration rate to the national mean (0.06 metric tons CO2 
ha-1 y-1) and (2) the area of FRF in eastern Texas for this analysis is 4.75 Mha. The estimated model-based 
variance is 0.022 [MMT CO2]2. The estimated 95% confidence interval for eastern Texas litter carbon 
stock change is -0.58 MMT CO2 to 0.01 MMT CO2, where positive values indicate emission and negative 
values indicate sequestration. The estimated percentage errors are -103.9% (lower bound) and 102.1% 
(upper bound). Applying these percentage errors to the mean litter carbon stock change for the United 
States for 2016 (-16.1 MMT CO2; NGHGI 2018) results in a 95% confidence interval of -32.8 MMT CO2 (a 
sequestration) to 0.3 MMT CO2 (an emission). The contribution to uncertainty is 33.2 MMT CO2. 

DISCUSSION 
The Domke et al. (2016) litter carbon analysis points to multiple sources of uncertainty in estimating litter 
carbon stocks, including first modeling litter carbon at all FIA plots using machine learning methods and 
extrapolating FIA plot values to total U.S. forest area. Due to the complexity of the Random Forests 
machine learning model and lack of data, we were not able to replicate litter carbon stock estimation 
methods, and were not able to further attribute litter carbon uncertainty across model and sampling 
error. 

We tested the stability of our results to the number of Monte Carlo iterations, finding nearly identical 
95% confidence intervals for the United States using 50,000 iterations (-32.7 MMT CO2 to 0.4 MMT CO2) 
as we found with 10,000 iterations (-32.8 MMT CO2 to 0.3 MMT CO2). We additionally tested the 
sensitivity of our results to the prescribed level of covariance between the carbon stocks in the two time 
periods (using 10,000 iterations for each analysis). The results of our sensitivity analysis are shown in 
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Table T-5. This shows that results are highly sensitive to our assumption of litter carbon stock covariance 
across time periods. For this reason, we don’t include litter carbon in the top 10 sources of NGHGI 
uncertainty in the Executive Summary, though it is possible both litter and soil carbon (as we discuss 
further below) should be considered high priorities.  

Table T-5: Sensitivity of litter carbon uncertainty results to covariance assumption 

Covariance  
(as a fraction  
of variance) 

Percentage error Eastern Texas United States 
Lower bound 
(MMT CO2) 

Upper bound 
(MMT CO2) 

Lower bound 
(MMT CO2) 

Upper bound 
(MMT CO2) 

Uncertainty 
contribution 
(MMT CO2) 

0.5 -2,298%, 2,258% -6.9 6.2 -386.1 347.4 733.5 

0.75 -1,631%, 1,602% -5.0 4.3 -278.6 241.8 520.5 

0.9 -1,034%, 1,016% -3.3 2.6 -182.6 147.5 330.2 

0.95 -732.6%, 719.8% -2.4 1.8 -134.0 99.8 233.8 

0.999 -103.9%, 102.1% -0.6 0.01 -32.8 0.3 33.2 

0.9999 -32.9%, 32.3% -0.4 -0.2 -21.4 -10.9 10.5 

 

2.3 Carbon stock change in forest soils 

NGHGI METHODS 
The annual net CO2 flux from the forest soil carbon pool is calculated as the change in soil carbon stock 
between year t and year t-1. The method used to estimate soil carbon stocks on U.S. forest land is 
described by Domke et al. (2017); we provide only a brief outline here. Soil cores to a depth of 20 cm 
are taken on 1/16 of forested FIA ground plots, followed by lab analysis to estimate soil carbon stock. 
The NGHGI combines the FIA soil carbon dataset with forest soil carbon measurements taken by the 
International Soil Carbon Monitoring Network (ISCN) to develop a model that allows estimation of soil 
carbon stocks on the measured FIA plots to a depth of 100 cm. A Random Forests machine learning 
model is then combined with this refined set of FIA soil estimates down to 100 cm to predict forest soil 
carbon stocks on all forested FIA plots based on measured variables, including: latitude, longitude, 
elevation, forest-type group, precipitation, temperature, evapotranspiration, soil order, and surface 
geology. The standard extrapolation to total forest area is then applied to calculate total U.S. soil carbon 
stocks. 

PROJECT METHODS 
We estimate the 95% confidence interval for soil carbon stock change that accounts for modeling error 
using a method that is similar to that applied for litter carbon stock change (Section 2.2). We apply this 
simplified method based on summary statistics for soil carbon stocks from Domke et al. (2017) since the 
method used in the NGHGI (2018) is beyond the scope of this analysis. We repeat here the same caveat 
that we made for the litter carbon pool: A significant shortcoming of our approach is that it requires 
assuming covariance of soil carbon stocks between two time periods, which means that we are setting 
the variance of the CO2 flux by assumption. While the NGHGI reports variance in the soil carbon stock, it 
does not report uncertainty for soil carbon stock change; reporting this latter statistic would allow us to 
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better compare the uncertainty for soil carbon fluxes with the uncertainties for other forest ecosystem 
carbon pools. 

For our analysis, we again make use of the eastern Texas Phase 2 ground plots from the FIA Database 
(USDA Forest Service 2018). We use the FIA data only to identify the locations of plots in eastern Texas 
with FRF area. We identify the rows of SUBP_COND_CHNG_MTRX table that correspond to plots 
associated with EVALID 481723 that have any accessible forest land in either the previous or current 
measurement period. On this subset of plots, we compare the sizes of the forest-containing land use 
regimes and then select those for which the FRF category is largest among these. We identify the 
latitude and longitude coordinates for each of these 2,193 plots using the PLOT table of the FIA 
Database. Based on these coordinates, we identify the dominant soil order for each plot, using a dataset 
derived from the SSURGO database (Soil Survey Staff 2019) that was prepared for us by Steve Campbell 
at the USDA Natural Resources Conservation Service in Portland, OR. Our dataset of 2,193 plots 
encompasses 6 different soil orders: (1) Alfisols (1,024 plots); (2) Entisols (108 plots); (3) Inceptisols (156 
plots); (4) Mollisols (25 plots); (5) Ultisols (704 plots); and (6) Vertisols (159 plots). In a limited number of 
cases (17 plots), no soil order could be assigned. For the analysis of soil carbon, we use the FIA data only 
to identify the distribution of soil orders in eastern Texas; thus, our estimates of soil carbon stock change 
might be biased by our focus on eastern Texas since the national soil order distribution is not identical to 
that in Texas. 

We use Monte Carlo iterations to estimate modeling error for the annual change in soil carbon stock. For 
each plot, we generate distributions of soil carbon stock for both the previous period and the next 
period (previous period plus one year), using the same soil order for both time points. We assume that 
the plot-level carbon stocks in the two periods are jointly distributed with positive covariance and 
assume lognormal distributions for the carbon stocks. Soil carbon stock means, measured to 100cm, by 
soil type along with minimum and maximum values, were taken from Domke et al. (2017), their table 3. 
First we constructed a triangular distribution for each soil type using the reported mean, minimum, and 
maximum values, then augmented the minimum and maximum for each soil type by the additional 
standard deviation from using Random Forests to extrapolate soil carbon measurements to all FIA plots. 
This augmented triangular distribution was then used to parameterize a lognormal distribution for each 
soil type, to allow for use of covariance across time steps. We applied the statistics for the “all soils” 
category to the 17 plots for which a soil order was not assigned. 

We force the annual sequestration rate for each plot to be identical to the national average 
sequestration rate of 0.50 metric tons CO2 ha-1 y-1, which we estimated by dividing the total national soil 
carbon sequestration for 2016 for FRF (135.3 MMT CO2 y-1 for mineral plus organic soils, excluding 
drained organic soils; Table 6.10 of NGHGI 2018) by the total national FRF area in 2016 (272,260,000 ha; 
Table 6.12 of NGHGI 2018). The total FRF area figure accounts for managed forest land in the 
conterminous United States and southeastern and south central coastal Alaska. We apply a very high 
level of covariance between the soil carbon stocks in the two periods; that is, we assume a covariance 
that is 0.999 times the magnitude of the variance.  

We used the R programming language (R Core Team 2018) for analysis and made use of the 
“rlnorm.rplus” function from the “compositions” package (van den Boogaart 2018). We generated 
50,000 pairs of soil carbon stocks for each period for each plot. Element-by-element subtraction (next 
period carbon stock minus previous period carbon stock) results in a plot-level distribution of annual 
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carbon flux (metric tons CO2 ha-1 y-1). We apply equations 1–3 from Ogle et al. (2010) to estimate the 
regional annual soil carbon stock change (i.e., the soil carbon stock change for all of eastern Texas) and 
the associated modeling error. We describe these equations in detail in Section 2.2 above. Because the 
annual sequestration rate for every plot is forced to the national mean sequestration rate in our analytical 
framework, we are unable to calculate a sampling error for soil carbon flux. We derive the 95% 
confidence intervals for soil carbon stock change for both eastern Texas and the entire United States 
using the same method as described in Section 2.2 for litter carbon. 

RESULTS 
We estimate a mean soil carbon sequestration for eastern Texas FRF land of 2.4 MMT CO2 over a 1-year 
time step. Using a Monte Carlo analysis that prescribes the covariance between carbon stocks in the two 
periods as 0.999 times the magnitude of the variance, the estimated model-based variance for eastern 
Texas is 1.35 [MMT CO2]2. The estimated 95% confidence interval for eastern Texas soil carbon stock 
change is -4.7 MMT CO2 to -0.1 MMT CO2, where negative values indicate sequestration. The 
percentage errors are -94.4% (lower bound) and 94.6% (upper bound). Applying these percentage errors 
to the mean soil carbon stock change for the United States for 2016 (-135.3 MMT CO2; NGHGI 2018) 
results in a 95% confidence interval of -263.1 MMT CO2 to -7.4 MMT CO2. The contribution to 
uncertainty is 255.7 MMT CO2. 

DISCUSSION 
Similar to litter carbon, we were not able to attribute soil carbon uncertainty across model and sampling 
error due to the complexity of the Random Forests machine learning model.  

We tested the sensitivity of our results to the prescribed level of covariance between the carbon stocks 
in the two time periods (using 50,000 iterations for each analysis). The results of our sensitivity analysis 
are shown in Table T-6. This shows that results are highly sensitive to our assumption of soil carbon stock 
covariance across time periods. For this reason, we don’t include soil carbon in the top 10 sources of 
NGHGI uncertainty in the Executive Summary, though it is possible both litter and soil carbon should be 
considered high priorities. Even assuming the highest amount of covariance between time periods 
(0.9999), the uncertainty contribution from soils is 81.2 MMT CO2, on par with the contribution from tree 
volume coefficients which are the second largest source of uncertainty in the LULUCF GHG inventory. 

Table T-6: Sensitivity of soil carbon uncertainty to covariance assumption 

Covariance  
(as a fraction  
of variance) 

Percentage errors  
(lower bound, 
upper bound) 

Eastern Texas United States 
Lower bound  
(MMT CO2) 

Upper bound  
(MMT CO2) 

Lower bound  
(MMT CO2) 

Upper bound 
(MMT CO2) 

Uncertainty 
contribution 
(MMT CO2) 

0.5 -1,936%, 1,948% -51.7 46.9 -2,754.4 2,500.7 5,255.2 

0.75 -1,406%, 1,1415% -37.9 33.0 -2,038.3 1,778.8 3,817.1 

0.9 915%, 913% -25.2 20.1 -1,373.5 1,099.9 2,473.4 

0.95 -655%, 653% -18.6 13.6 -1,021.7 748.4 1,770.1 

0.999 -94.4%, 94.6% -4.7 -0.1 -263.1 -7.4 255.7 

0.9999 -30.0%, +30.0 -3.1 -1.7 -175.9 -94.7 81.2 
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2.4 Non-CO2 from forest fires 

NGHGI METHODS 
The NGHGI quantifies CH4 and N2O emissions from forest fires in the conterminous United States 
(CONUS) and Alaska following IPCC methodology (IPCC 2006). Equation 3 provides the basic structure 
of the emissions calculation (IPCC 2006). 

Equation 3: Non-CO2 emissions from forest fires (NGHGI 2018) 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐵𝑢𝑟𝑛𝑒𝑑	𝑎𝑟𝑒𝑎	 × 	𝐹𝑢𝑒𝑙	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	 × 	𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	 × 	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟 

This section describes the approach used the 2018 NGHGI to develop the input parameters for this 
equation; updates from the 2019 NGHGI are described in the “Discussion” section below. 

Annual estimates of burned area are based on a combination of input data from multiple sources. The 
Monitoring Trends in Burn Severity (MTBS) dataset provides annual fire data (e.g., location, intensity, and 
burned area), but does not delineate the fires by ecosystem type (MTBS Data Summaries 2015). A forest 
area dataset approximately representative of 2002 from Ruefenacht et al. (2008) is used to determine the 
fraction of the MTBS burned area that occurs on forest land. Alaskan forests are additionally subset into 
managed and unmanaged areas based on Ogle et al. (2018). All fires in Alaska are assumed to occur in 
boreal forest. 

For the conterminous United States, state-level fuel availabilities (mass of dry matter available per unit 
area) are derived using FIA plot data (USDA Forest Service 2015). For each measurement plot in a state, 
the fuel available for wildfires is calculated as the plot-level biomass density, accounting for litter, 
downed dead wood, understory vegetation, and aboveground biomass in living and standing dead 
trees. Similarly, the fuel available for prescribed fires is calculated as the plot-level biomass density, 
accounting for litter, downed dead wood, and aboveground biomass in standing dead trees. The 
NGHGI reports that, for a given state, the plot-level fuel availabilities are generally lognormally 
distributed. 

The combustion factor (mass of dry matter burned per mass of dry matter available) applied for the 
conterminous United States is the default factor for temperate forests from IPCC (2006). A combined 
parameter that takes into account both fuel availability and the combustion factor for boreal forests from 
IPCC (2006) is applied for all fires in Alaska. The emission factors for CH4 and N2O (mass of gas emitted 
per mass of dry matter burned) are likewise from IPCC (2006). Emissions of CH4 and N2O are converted 
to CO2 equivalents using 100-year global warming potentials (GWPs) from IPCC (2007). The NGHGI 
calculates non-CO2 emissions from forest fires separately by state, year, and fire type (wildfires and 
prescribed fires). 

The NGHGI quantifies the 95% confidence intervals for non-CO2 emissions from forest fires using Monte 
Carlo iterations. The variable parameters include: (1) burned area (normally distributed with standard 
deviation that is 4% of the mean), sampled by year; (2) state-level fuel availability for conterminous 
United States (lognormally distributed for each fire type), sampled by state and year; (3) combustion 
factor for conterminous United States (normally distributed, truncated at zero), sampled by year; (4) 
combined fuel availability–combustion factor for Alaska (normally distributed, truncated at zero), 
sampled by year; and (5) emission factors (normally distributed, truncated at zero), sampled by year. The 
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lognormal distributions of state-level fuel availabilities are derived from fitting the FIA plot data. For 
factors 3–5, both the means and standard deviations are those reported by IPCC (2006). No uncertainty 
is assigned to the GWPs. 

PROJECT METHODS 
We use Monte Carlo iterations (n=1,000,000) to separately quantify the 95% confidence intervals for CH4 
and N2O emissions from forest fires. We apply the same underlying computational framework as is 
applied in the NGHGI (2018), but additionally quantify the percent contribution to uncertainty from 
several uncertain parameters. The Monte Carlo analysis was performed using the R programming 
language (R Core Team 2018) and made use of the “truncnorm” package (Mersmann et al. 2018). The 
input parameters for the Monte Carlo analysis are summarized in Table T-7. We focus our calculation on 
year 2014 since this is the most recent year for which burned area estimates were made available to us. 
We apply the same percentage uncertainty for the burned area as is suggested by the NGHGI (i.e., 
standard deviation is 4% of the mean). Because the NGHGI does not report state-level burned area and 
fuel availabilities for the conterminous United States, we quantify emissions using total burned area and 
the mean fuel availability for the conterminous United States. 

We follow the contribution index analysis shown in Equation 1 above, with 1,000,000 Monte Carlo 
iterations for each element of uncertainty. For non-CO2 emissions from forest fires, we quantify the 
relative contribution to uncertainty from five parameter groups: (1) burned area; (2) fuel availability for 
the conterminous United States; (3) combustion factor for the conterminous United States; (4) combined 
fuel availability–combustion factor for Alaska; and (5) emission factor. We assume independence for all 
parameters. 

Table T-7: Input parameters for contribution index analysis of non-CO2 emissions from forest fires 

Parameter Mean Standard deviation Probability distribution 
CONUS total wildfire burned area 679,000 ha a 27,160 ha b Normal 

CONUS total prescribed fire burned area 10,650 ha c 426 ha b Normal 

Alaska total burned area 346,850 ha d 13,874 ha b Normal 

CONUS wildfire fuel availability 149 metric tons dry matter 
available ha-1 e 

159 metric tons dry matter 
available ha-1 f 

Lognormal 

CONUS prescribed fire fuel availability 36 metric tons dry matter 
available ha-1 e 

24 metric tons dry matter 
available ha-1 f 

Lognormal 

CONUS combustion factor 0.45 g 0.16 g Normal,  
truncated at zero 

Alaska combined fuel availability–
combustion factor 

41.0 metric tons dry matter 
consumed ha-1 g 

36.5 g Normal,  
truncated at zero 

CH4 emission factor 4.7 g CH4 emitted kg-1  
[dry matter burned] g 

1.9 g Normal,  
truncated at zero 

N2O emission factor 0.26 g N2O emitted kg-1  
[dry matter burned] g 

0.07 g Normal,  
truncated at zero 

a) Estimate reported by NGHGI (2018), based on data from MTBS Data Summaries (2015) and Ruefenacht et al. (2008). 
b) Calculated as 4% of the mean, following NGHGI. 
c) Calculated from data reported by NGHGI (2018) and supplemental materials provided by NGHGI Team. Burned 
area estimates from NGHGI are based on MTBS Data Summaries (2015) and Ruefenacht et al. (2008). 
d) Estimate reported in supplemental materials provided by NGHGI Team. Burned area estimates for Alaska are based 
on Ogle et al. (2018), MTBS Data Summaries (2015), and Ruefenacht et al. (2008). 
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e) Estimates reported in supplemental materials provided by NGHGI Team. Based on FIA plot data (USDA Forest 
Service 2015). 
f) Derived from 5th and 95th percentiles reported in supplemental materials provided by NGHGI Team. Based on FIA 
plot data (USDA Forest Service 2015). 
g) IPCC (2006). 

RESULTS 
The 2014 estimates and 95% confidence intervals for CH4 and N2O emissions from forest fires are shown 
in Table T-8. The estimates for 2014 (7.2 MMT CO2e from CH4 and 4.7 MMT CO2e from N2O) are 
identical to those reported in the NGHGI (2018) despite the fact that we applied CONUS-mean fuel 
availabilities and CONUS-total burned area estimates instead of state-level values. There is significant 
interannual variability associated with non-CO2 emissions from forest fires (see Table 6-16 of NGHGI 
2018). The emissions estimates for 2016, the only year for which uncertainties are reported in the 
NGHGI, are more than 2.5 times larger than those for 2014. We estimate larger relative uncertainties for 
2014 emissions (about +250%) than the NGHGI estimates for 2016 emissions (about +120%). However, 
the magnitude of the 95% confidence interval, taken as the difference between the 97.5th percentile and 
the 2.5th percentile, respectively, is similar for our 2014 estimate and the 2016 estimate from the NGHGI: 
25.3 MMT CO2e for CH4 (our 2014 estimate) vs. 29.9 MMT CO2e (NGHGI 2016 estimate) and 15.5 MMT 
CO2e for N2O (our 2014 estimate) vs. 22.3 MMT CO2e (NGHGI 2016 estimate). 

Table T-8: Uncertainty estimates for non-CO2 emissions from forest fires 

Gas 2014 estimate 
(MMT CO2e) 

Lower bound a 
(MMT CO2e) 

Upper bound a 
(MMT CO2e) 

Lower bound b  
(%) 

Upper bound b 
(%) 

CH4 7.2 0.8 26.1 -89% 263% 

N2O 4.7 0.8 16.3 -83% 247% 

Total 11.9 2.0 41.0 -83% 245% 

(a) Lower and upper bounds correspond to 2.5th and 97.5th percentiles (95% confidence interval). 
(b) The relative uncertainties are calculated as a percentage of the 2014 estimate. 

The results of the contribution index analysis, which is based on total non-CO2 emissions from forest 
fires, are shown in T-9. Among the five uncertain parameter groups, the fuel availabilities applied to 
wildfires and prescribed fires in the conterminous United States together contribute the largest fraction 
(74%) of total uncertainty associated with non-CO2 emissions from forest fires. The combustion factor for 
the conterminous United States contributes a similar amount of uncertainty (9%) as is contributed by the 
emission factors (16%). Negligible uncertainty is contributed by uncertainty in burned area estimates 
(0.5%) and uncertainty in the combined fuel availability and combustion factor applied to fires in Alaska 
(0.8%).  
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Table T-9: RESULTS - Contributions to uncertainty for non-CO2 emissions from forest fires 

Variable held constant Range of 95% 
confidence interval 
(MMT CO2e) 

Contribution to 
uncertainty (%) 

Contribution  
to uncertainty 
(MMT CO2e) 

None (all vary) 39.0 – – 

Burned area 38.8 0.8 0.3 

CONUS fuel availabilities 19.5 73.6 28.7 

CONUS combustion factor 36.5 9.4 3.7 

Alaska fuel availability – combustion factor 38.8 0.8 0.3 

Emission factors 34.9 15.5 6.0 

DISCUSSION 
The newest iteration of the NGHGI (2019), which covers 1990–2017, introduces a number of updates to 
the input parameters for this GHG flux calculation: (1) delineation of forest within burned areas is now 
based on the National Land Cover Dataset (Homer et al. 2015) rather than Ruefenacht et al. (2008); (2) 
fuel availabilities derived from FIA plot data are now aggregated by ecological regions rather than by 
state; and (3) variable combustion factors based on burn severity, as specified by the MTBS dataset, are 
now applied instead of application of a single combustion factor for all fires in the conterminous United 
States. The updates to the input parameters resulted in a small downward revision in the emissions 
estimates for 2014: 6.1 MMT CO2e for CH4 and 4.0 MMT CO2e for N2O, for a total of 10.1 MMT CO2e 
(compared to 11.9 MMT CO2e reported by the previous NGHGI). 

Our analysis suggests that the fuel availabilities for the conterminous United States make the largest 
contribution to uncertainty. Because we apply national-mean fuel availabilities, rather than state-level 
fuel availabilities, to all fires in the conterminous United States, we might overestimate both the overall 
uncertainty and the uncertainty attributed to this parameter. Grouping of fuel availabilities by ecological 
region instead of by state, as is done in the newest iteration of the NGHGI, might reduce the error bars 
on the fuel inputs, thereby resulting in an overall reduction in the total uncertainty from non-CO2 
emissions from forest fires. 

2.5 Carbon stock change in harvested wood products 

NGHGI METHODS 
Changes in carbon stock stored in harvested wood products (HWP) in use and HWPs in waste disposal 
sites are both accounted for in the NGHGI. This is necessary because not all harvested wood from 
forests is immediately released to the atmosphere – long-lived wood products can store a significant 
percentage of harvested carbon for decades. Thus, carbon removed from forest biomass due to harvest 
must be allocated across CO2 emissions that immediately enter the atmosphere, carbon that enters a 
variety of wood products (e.g. timber, paper) for some period of storage, and CO2 that enters the 
atmosphere through decay of wood products. HWP calculations are estimated in the NGHGI through 
Tier 2 and 3 methods, using U.S.-specific data and models.  

The NGHGI utilizes the methods outlined in Skog (2008) to estimate changes in carbon stored in wood 
products, both those in use and those in waste disposal sites. Skog’s methods are consistent with the 
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IPCC (2006) “production method,” which accounts for all wood grown and harvested within the United 
States stored in products. That is, imported wood products are ignored and exports are accounted for. 
The NGHGI accounts for carbon from wood products harvested in 1900 through the present, accounting 
for gains in stored carbon from new harvest and production as well as losses of carbon from disposal and 
decay.  

Key equations used to estimate carbon in HWPs can be found in Skog (2008): equations 1–5 for wood 
products in use and equations 6–10 for disposed and decaying wood products. The equations 
themselves are long but relatively intuitive so we do not reproduce them here.  

Key parameters and inputs for estimating annual carbon stored in wood products in use are: 

• Discard rate of wood product for end use j (paper product, single-family housing, multifamily 
housing, residential upkeep and improvement, other)  

• Fraction of primary product i (plywood, lumber, pulpwood, roundwood, etc.) going to end use j 
• Amount of carbon in solid wood or paper products 
• Amount of sawlogs harvested annually 
• Amount of sawlogs imported annually 
• Amount of sawlogs exported annually 
• Fraction of total fiber used to make paper/paperboard from non-wood fiber 
• Fraction of imported woodpulp to make paper/paperboard 
• Total pulpwood used to make paper/paperboard annually 
• Amount of pulpwood imported annually 
• Amount of pulpwood exported annually 
• Amount of carbon in recovered, exported fiber pulp 
• Amount of carbon in recovered, exported paper 
• Amount of carbon in exported woodpulp1 

Key parameters and inputs for estimating annual carbon stored in wood products in waste disposal sites 
are: 

• Amount of carbon discarded from solid wood products annually 
• Amount of carbon discarded from paper products annually 
• Fraction of discarded solid wood products sent to dumps and landfills 
• Fraction of discarded paper products sent to dumps and landfills 
• Fraction of discarded paper and solid wood products sent to dumps rather than landfills annually 
• Fraction of discarded paper and solid wood products burned annually 
• Fraction of discarded paper and solid wood products recovered for recycling or export annually 
• Fraction of discarded paper and solid wood products composted annually 
• Fraction of carbon in solid wood products in landfills that is degradable 
• Fraction of carbon in paper in landfills that is degradable 
• Half-life of degradable carbon in paper and solid wood products in dumps or landfills 

Skog (2008) provides sources of information for all these pieces of data and parameter estimation. 

                                                   
1 Pulpwood is wood grown purposefully for paper production. Woodpulp is an intermediate material derived from 

pulpwood used to produce paper. Both pulpwood and woodpulp can be imported or exported and need to be 
accounted for separately. 
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PROJECT METHODS 
We directly use results from Skog et al. (2004), which utilizes the contribution index approach to evaluate 
contributions to uncertainty when calculating carbon stock changes in harvested wood products. Skog et 
al. (2004) evaluates uncertainty from only a subset of parameters and data inputs, some of which are not 
used in the Skog (2008) methods (i.e., parameter for increase rate in HWP production and trade from 
1900–1961). The Skog et al. (2004) analysis does not account for uncertainty elements that are 
accounted for in 95% confidence intervals in Skog (2008), including (1) carbon in housing in 2001; (2) 
fraction of solid wood and paper products from imports; and (3) export carbon storage rate as a fraction 
of the storage rate for similar U.S. products. Neither publication accounts for uncertainty from elements 
like (1) fraction of products recovered for compost or burning; (2) fraction of paper or solid wood 
products sent to dumps rather than landfills; and (3) fraction of pulp from non-wood fiber and imported 
woodpulp. We were not able to investigate these additional potential sources of uncertainty due to time 
and resource constraints. 

RESULTS 

Table T-10. RESULTS – Contributions to uncertainty for harvested wood products in use and in 
waste disposal sites 

Variable held constant Range of 95% 
confidence interval 
(MMT CO2e) 

Contribution to 
uncertainty (%) 

Contribution  
to uncertainty 
(MMT CO2e) 

None (all vary) 37.6 – – 

Solid wood product (SWP) data – a 30.5 11.5 

Paper data –  a 10.2 3.8 

SWP conversion to carbon – a 28.8 10.8 

Paper conversion to carbon – a 8.5 3.2 

SWP discard rate – a 5.1 1.9 

Paper discard rate – a 3.4 1.3 

Decay rate in solid waste disposal sites – a 5.1 1.9 

SWP decay limit – a 1.7 0.6 

Paper decay limit – a 6.8 2.5 

a) Not reported in Skog et al. (2004). 

DISCUSSION 
Though Skog et al. (2004) and Skog (2008) are not completely consistent in methods and uncertainty 
estimation, the total uncertainty estimated in both papers is similar, and both are similar to reported 
NGHGI uncertainty for HWPs. The three factors accounted for in Skog (2008) uncertainty but not in Skog 
et al. (2004) therefore likely account for very little uncertainty. However, we cannot infer how much 
additional uncertainty might be contributed when accounting for uncertainty from factors not assessed in 
either paper. The final results of this project show that HWP elements are some of the top 10 most 
impactful factors in determining total forest carbon flux uncertainty, so updated analysis of HWP 
uncertainty that accounts for a broader range of uncertainty elements would be useful.  
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2.6 N2O from N additions to forest soils 

NGHGI METHODS 
Synthetic nitrogen fertilizers applied to U.S. forest soils result in direct and indirect N2O emissions (0.5 
MMT CO2e), which are estimated using a Tier 1 approach in which the area of trees receiving N fertilizer 
is multiplied by estimated application rates from the literature. Indirect N2O emissions are calculated by 
first determining the fraction of N volatilized, leached, and runoff, using IPCC default factors. This 
amount is then multiplied by other IPCC default factors to determine the total of N volatilized and N 
leached and runoff. Uncertainty is quantified using simple error propagation and stems from the 
interactions of variables that are unrepresented by the IPCC methodology – including pH, temperature, 
and soil moisture content – which result in N2O emissions, and the omission of N2O emissions from 
organic N fertilizers. There is also uncertainty in the IPCC emission factors, as well as the area of forest 
land estimated to receive fertilizer and fertilization rates, which are estimated in accordance with expert 
knowledge.  

DISCUSSION 
Because of the small contribution of N2O fluxes from N additions to forest soils to total GHG flux  
(Table T-11), we did not undertake further uncertainty attribution analysis beyond what is reported in the 
NGHGI (2018). 

Table T-11: RESULTS – Contributions to uncertainty of N2O fluxes from N additions to forest soils 

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to  
uncertainty (%) 

Contribution to  
uncertainty (MMT CO2e) 

None (all vary) 1.08 – – 

Direct N2O Fluxes 0.40 90 0.97 

Indirect N2O Fluxes 1.00 10 0.11 

 

2.7 CO2, CH4, and N2O from drained organic forest soils 

NGHGI METHODS 
CO2, CH4, and N2O emissions from drained organic soils in forests (0.9 MMT CO2e) are calculated using 

Tier 1 methodology. There are three types of emissions: (1) direct emissions primarily from 

mineralization; (2) indirect/off-site CO2 emissions from dissolved organic carbon in drainage waters; and 

(3) emissions from peat fires on organic soils. Using FIA and SSURGO data, area of drained organic 

forest soil is estimated and multiplied by IPCC default emission factors for CO2, CH4, and N2O. 

Estimation uncertainty of drained organic soil forest area and IPCC emission factor uncertainty is 

combined through error propagation to estimate the 95% confidence interval reported in the NGHGI 

(2018). 
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DISCUSSION 
Due to the small contribution of drained organic soil CO2, CH4, and N2O to total LULUCF GHG flux 
(Table T-12), we did not perform further uncertainty attribution analysis beyond what is reported in the 
NGHGI (2018). 

Table T-12: RESULTS – Contributions to uncertainty for CO2, CH4, and N2O from drained organic 
forest soils 

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to uncertainty 
(%) 

Contribution to uncertainty   
(MMT CO2e) 

None (all vary) 0.55 – – 

CO2 0.22 87.3 0.48 

CO2 dissolved 0.54 2.6 0.01 

CH4 0.55 0.0 0.0 

N2O 0.51 10.1 0.06 
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3 Croplands and Grasslands 

3.1 Carbon stock change, N2O, and rice CH4 on DayCent soils 

NGHGI METHODS 
The NGHGI cropland and grassland sections, along with agricultural soil management and rice CH4, use 
a combination of Tier 1, 2, and 3 methods to estimate fluxes of CO2, N2O, and CH4 from cropland and 
grassland soils and nitrogen inputs. The U.S. Tier 3 approach, which covers 78% of managed U.S. 
cropland and grassland soils, utilizes DayCent, a biogeochemical soil model (NGHGI 2018). The soils not 
covered by Tier 3, including federal grasslands, shaley and gravelly soils, and minor crop types with 
insufficient data to parameterize DayCent, are calculated with simpler Tier 1 and Tier 2 methods which 
are based on IPCC (2006, 2019) equations and parameters. 

Data inputs to DayCent are primarily sourced from the National Resources Inventory (NRI), a statistically-
based survey of non-federal lands in the conterminous U.S. and Hawaii. Land use and management data 
– including details on crop type, irrigation, and soil attributes – are collected from NRI survey locations. 
NRI survey locations are classified as Cropland Remaining Cropland, Land Converted to Cropland, 
Grassland Remaining Grassland, or Land Converted to Grassland, if they have been converted for at 
least 20 years, using land use histories from 1978.  

NRI data was initially collected in five-year cycles beginning in 1982, shifting to annual collection in 1998. 
They have been collected up until 2012, and the subsequent years following have used a “surrogate 
data” method to extrapolate 2012 data through 2016 – this means a linear relationship is calculated 
between GHG fluxes and annual observable data like commodity statistics and weather, and this linear 
relationship is used to estimate fluxes in years without NRI data, using the annual observable data. Note 
that the NGHGI (2018) is not explicit about which surrogate data are used for each GHG flux, and 
uncertainty stemming from the surrogate data estimation is not reported separately from DayCent 
uncertainty, so it is difficult to understand the impact of lacking NRI data on overall GHG flux uncertainty. 

Additional DayCent inputs are obtained from various sources including: net primary productivity data 
from the NASA-CASA MODIS Enhanced Vegetation Index, tillage data from Conservation Technology 
Information Center (CTIC), fertilizer use and rates by crop type from USDA Economic Research Service, 
manure data from the USDA Natural Resources Conservation Service, daily weather data from the PRISM 
Climate Group, and soil attributes from the SSURGO Database. These inputs all have varying levels of 
uncertainty. 

DayCent output uncertainty is driven by three components (Annex 3 of the NGHGI 2018; Ogle et al. 
2010; Ogle et al. 2003): 

(1) Structural uncertainty: Uncertainty attributed to DayCent model structure and parameterization. 
This represents at least 70-90% of DayCent output uncertainty. 

(2) Input uncertainty: Uncertainty in the activity and management data inputs, such as crop type or 
land-use type, land area of each land-use/management type, fertilization rates, and tillage 
practices. Data primarily comes from the NRI, as well as the aforementioned sources.  
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(3) Scaling uncertainty: Uncertainty in the accuracy of land stratification and total land area 
estimates for each land-use/management type. This represents a minor fraction of total 
uncertainty, and is estimated from the NRI. 

To calculate the Tier 3 95% confidence intervals for each GHG flux estimate, all three sources of variance 
are accounted for (Table T-13). 

First, input uncertainty and structural uncertainty are combined through Monte Carlo analysis. Variances 
for some (but not all) model inputs are used in the Monte Carlo. Thus, some data inputs, such as weather 
and soils data are considered to have zero uncertainty. To calculate structural uncertainty, DayCent fixed 
and random effect variances are estimated by regressing DayCent results on empirical soil GHG 
emissions measurements. Input and structural variances are run through a Monte Carlo analysis together, 
estimating 100 results for each NRI data point, of which there are over 670,000 representing agricultural 
land throughout the United States. Each Monte Carlo replicate is area weight-summed across the 
country to find national soil GHG emissions for each replicate, then the model input/structure variance is 
estimated by averaging the squared deviation of these summed replicates from the national mean.  

Second, scaling uncertainty is calculated as the average variance of GHG emissions estimates across NRI 
strata (the average NRI point deviation from mean GHG emissions within each land use/management 
strata, averaged across strata). Scaling variance plus model input/structure variance is assumed to equal 
total variance, which is used to estimate the total 95% confidence interval for each GHG flux estimate for 
each land use/management type. 

As noted above, a linear regression using surrogate data, predictor variables that explain trends in the 
emission patterns, with autoregressive moving average errors is used to extrapolate 2012 emissions data 
to 2016, the most recent year of the NGHGI (2018). This regression contributes additional uncertainty to 
the 2013-2016 calculations. 

Table T-13: Cropland and grassland Soil CO2, N2O, and CH4 flux estimates and uncertainties,  
Tier 3 (NGHGI 2018) 

 2016 Flux Estimate  
(MMT CO2e) 

Lower/Upper Bound 
(MMT CO2e) 

Lower/Upper 
Bound (%) 

Mineral  
C stock 
change 

Cropland remaining Cropland -36.3 -80.2 / 7.5 121 

Land converted to Cropland 14.6 -3.5 / 32.7 124 

Grassland remaining 
Grassland 

-4.2 -44.8 / 36.3 958 

Land converted to Grassland -8.6 -17.4 / -0.3 103 

Soil N2O 
emissions* 

Direct 237.6 199.2 / 276.1 16 

Indirect 45.9 16.0 / 116.8 65 / 154 

CH4  Rice cultivation 11.9 7.7 / 16.2 36 

Tier 3 Total 260.9 171.4 / 350.4 34 

Tier 3 total uncertainty reported here is calculated by error propagation, assuming normal distribution and 
independence for all Tier 3 categories (for non-symmetric categories the average error bar is used to estimate a 
symmetric standard error). Negative values indicate CO2 sequestration. See Section 3.2 for Tier 1 and 2 uncertainties. 
*Soil N2O emissions are quantified through a combination of Tier 3 and Tier 1 approaches. Direct N2O emissions for 
DayCent soils are estimated with a Tier 3 approach, and DayCent outputs for N volatilization and NO3 leaching/runoff 
are combined with Tier 1 factors to derive indirect emissions. For soils not covered by DayCent, an exclusively Tier 1 
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approach is used for both direct and indirect N2O emissions. NGHGI N2O results are not reported by Tier 3 vs. Tier 1. 
Because DayCent covers 91% of direct N2O emissions, all N2O emissions are listed as Tier 3, for simplicity. 

PROJECT METHODS 
Our objective was to use consistent methods for estimating and attributing uncertainty across all the 
NGHGI sections in our scope, with the ideal approach being full replication of inventory methods and 
using the contribution index equation to estimate uncertainty attribution. Unfortunately it was not 
possible to do this for the cropland and grassland sections, both due to the complexity of the DayCent 
model and due to the confidential nature of the NRI dataset. This made it impossible to replicate Tier 1, 
2, or 3 components of the cropland and grassland sections.  

Our alternative method for Tier 3 uncertainty attribution was to issue an expert elicitation to rank all 
cropland and grassland elements of uncertainty. We discuss our alternative methods for Tiers 1 and 2 
below in Section 3.2, Carbon stock change and N2O in non-DayCent soils. The full survey can be viewed 
here: https://www.surveymonkey.com/r/LULUCFinventory. The objective of the Tier 3 expert elicitation 
was two-fold: 1) to quantify the uncertainty associated with each data and model element used to 
calculate U.S. mineral soil GHG fluxes on croplands and grasslands (note that organic soils are not 
included in Tier 3), and 2) to rank priority research, model development, model inter-comparison, and 
empirical data-generating activities for reducing uncertainty in national soil GHG emission estimates. The 
elicitation was split into two parts, with each addressing one of the objectives.  

Participation in Section 1 required knowledge of Century/DayCent or similar biogeochemical soil 
models, and IPCC accounting. Experts were asked to confirm that they possessed this knowledge before 
completing Section 1. It was divided into three prompts.  

In Section 1, Prompt 1, participants were asked to provide their best estimate of the percentage 
contribution of various model inputs, model structure, and other sources of uncertainty, to total 
estimated uncertainty for soil GHG emissions estimates. They were asked to consider 11 DayCent inputs 
and DayCent processes/parameters, including: manure and organic fertilizer applications, tillage, plant 
growth and phenology, and methanogenesis. To aid the experts in their elicitation, each element was 
hyperlinked to a pop-out box that further elaborated on how that specific element played a role in 
DayCent calculations and how it could contribute to uncertainty. For reference, participants were 
provided a description of how uncertainty is estimated for Tier 3 calculations (similar to the description 
above) and a table of cropland and grassland soil CO2, N2O, and CH4 flux estimates and uncertainties by 
tier. Experts were provided an example to guide their responses: if a participant believed that one of the 
elements, for example fertilization management, contributed 10% to total uncertainty, s/he was 
suggesting that fertilization management represented about 8.95 MMT CO2e of the total Tier 3 89.5 
MMT CO2e 95% confidence interval in one direction of the mean. Uncertainty effects were assumed to 
be symmetric about the mean and while experts could indicate their beliefs that the elements had a non-
symmetric effect, none did so. Experts were instructed that the total percentage estimates were to sum 
to 100% or less. 

In Section 1, Prompt 2, experts were asked to complete a similar exercise, but for elements that hadn’t 
been included in the calculation of the cropland/grassland Tier 3 95% confidence interval. These were 
elements that had been considered “certain” for purposes of estimating the 95% confidence interval in 
the NGHGI (2018). Participants could attribute any percentage to these elements, as long as their 
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estimates reflected the additional uncertainty that was contributed to the 95% confidence interval, had 
their true variance been incorporated into the analysis. Again, experts were provided an example to 
guide their responses: if a participant believed that the first listed element, “Soil properties,” contributed 
10% to the total uncertainty, this meant it represented an expansion of the current 95% confidence 
interval by 5% (of the mean, in MMT CO2e) in each direction (upper limit and lower limit), in accordance 
with a symmetric distribution. This would suggest that Cropland Remaining Cropland, for instance, 
added 4.28 MMT CO2e above and below the current uncertainty range.  

In Section 1, Prompt 3, we asked experts to rate the importance of the planned/suggested 
improvements, as described in the NGHGI, for cropland/grassland Tier 3 estimates, and their ability to 
reduce U.S. soil GHG emissions uncertainty or to address omitted fluxes. Experts could select one of five 
responses – Not important, Slightly important, Important, Very important, and Extremely important – for 
each planned/suggested improvement. 

Any expert in soil science and GHG measurement and accounting was encouraged to complete Section 
2. We stressed that a knowledge of Century/DayCent was not required for this section. Participants were 
asked to rank the importance of various research, model development, intermodel comparison, and 
data-generating activities, specifically with regard to reducing uncertainty in national U.S. soil GHG 
emission estimates. The elements available for ranking in this section were identified through an 
extensive literature review of 52 papers. Two literature searches were conducted – one focused on CO2 
fluxes in cropland and grassland landscapes, and the other on CH4 and N2O fluxes – using search terms 
specifically selected to generate relevant results, such as “model” and “additional research.” The search 
was limited to papers published between 2010 and 2018. Papers were ranked according to the total 
number of citations, and reviewed in full if they discussed soil CO2, N2O, and/or CH4 findings, research 
needs, or modeling for GHG fluxes on croplands or grasslands. Additional papers recommended by 
stakeholders were also reviewed, summing up to a total of 58. 

Similar to Section 1, Section 2 was also divided three prompts, asking about priorities in 1) primary soil 
research; 2) soil model development and intermodel comparison; and 3) empirical data needs, 
respectively. For each prompt, participants were asked to rate the importance of the various listed 
literature recommendations specifically with respect to how effectively they could improve soil GHG 
emissions for national GHG accounting in the United States.  

Expert review and participation 
Prior to distribution, the expert elicitation was reviewed by the NGHGI leads for croplands and 
grasslands to ensure accuracy and usefulness. The survey was then distributed through three channels – 
to the primary authors of the 58 papers reviewed, to USDA and EPA scientists that had previously been 
contacted for various parts of this project or that had been listed as contributors to the cropland and 
grassland section of the NGHGI, and to the listserv of the International Soil Carbon Network. In sum, the 
survey reached the inboxes of 984 people, the majority of which came from the ISCN listserv (879 
individuals), who were provided three weeks to complete the survey.  

Response rate was more muted than hoped. Of the 47 individuals clicked into the survey, 19 provided 
responses. Seven experts completed some or all of Section 1 (not all questions required responses), and 
19 completed Sections 2. The 19 that completed Section 2 included the seven from Section 1. We 
hypothesize that there may have been a low response rate for a few reasons: 1) Section 1 was very 
specific and only those with deep knowledge of Century/DayCent or other similar biogeochemical 
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models, and IPCC accounting were requested to participate; 2) Section 2 was comprehensive and if 
respondents were not familiar with the breadth of soil science discussed, they may have been deterred 
from participation; 3) the majority of experts on the primary author list were academics and scientists in 
other countries, and perhaps were not as invested in providing feedback that would benefit the national 
greenhouse gas inventory for the United States. Despite this, some consistent themes emerged, 
particularly around the need for more data and a better understanding of the N2O cycle. 

Of those who responded, most had expertise in the fields of soil science (87%), biogeochemistry (67%), 
and the carbon cycle (67%). 53% worked in academia, followed by 33% in government, and the 
remainder in NGO or private sector. 

RESULTS  

Section 1 
The results for Section 1, Prompts 1 and 2 are displayed below in Table T-14 and Table T-15.  
Values reflect the averages of all responses. 

Table T-14: RESULTS - Contributions to uncertainty for Tier 3 cropland and grassland soils 

Category Element Contribution to 
uncertainty (%) 

# of responses 

DayCent processes and 
parameters 

Organic matter formation and decomposition 
 

17 5 

DayCent processes and 
parameters 

Nitrification and denitrification processes 
 

16 5 

DayCent inputs Manure and other organic fertilizer applications 
 

15.5 5 

DayCent inputs Tillage (conventional, reduced, no-till) 
 

15.5 5 

DayCent inputs Fertilization management 14.5 5 

DayCent processes and 
parameters 

Soil and water temperature regimes by layer 10.4 5 

DayCent processes and 
parameters 

Plant growth and phenology 9.5 5 

DayCent inputs Enhanced Vegetation Index (EVI) data 7.7 5 

DayCent processes and 
parameters 

Methanogenesis 5.9 5 

Other Surrogate data 4.7 5 

Other Expansion factors 2 5 
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Table T-15: RESULTS - Average Prompt 2 responses – greatest contributors to Tier 3 uncertainty, 
not included in reported 95% confidence interval 

Category Element Contribution to 
uncertainty (%) 

# of responses 

All land use and GHG flux categories Soil properties 17.5 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Leaching, runoff, and volatilization 16 5 

Grassland Remaining Grassland Grazing intensity 8.5 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Irrigation 8 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Harvest, variable residue removal 7.4 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Flooding/drainage for rice cultivation 6.5 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Crop types 6.5 5 

All land use and GHG flux categories Daily weather data 6.25 5 

Grassland Remaining Grassland Burning (grasslands) 4.7 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Organic amendments for rice 
cultivation 

5.75 5 

Cropland Remaining Cropland  
and Land Converted to Cropland 

Crop sequences (rotation) 5.4 5 

All land use and GHG flux categories NRI time series 2.7 5 

 

These results from Prompt 1 and 2 indicate participating experts believed much of the uncertainty can 
be attributed to the following:  

(1) DayCent methods for representing organic matter dynamics and utilizing soil properties. 
“Organic matter formation and deposition” (17% of Tier 3 uncertainty) references the soil 
organic C and N dynamics assessed for the top 30 cm of the soil profile. DayCent represents 
organic C and N stocks by two plant litter pools and three soil pools that exhibit increasing 
recalcitrance and humification. There is increasing literature debate about the ability of such a 
categorical “pool” structure to represent soil processes. “Soil properties” (17.5% of additional 
uncertainty) references the primary soil input variables in DayCent – soil texture and natural 
drainage capacity. These data are collected through field measurements – which may exhibit 
uncertainty due to errors in data mapping, collection, and processing – and aerial photography 
and remote sensing imagery – which are approximations of ground data. 
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(2) N2O inputs and soil process. The uncertainty associated with “Nitrification and denitrification 
processes” (16% of Tier 3 uncertainty) stems from the simulation of nitrification and 
denitrification from factors like water filled pore space, which vary; nitrification is also only 
calculated for the top 15 cm. “Manure and other organic fertilizer applications” (15.5% of Tier 3 
uncertainty), references estimates of organic fertilizers which may have uncertainty due to 
assumptions such as application type, or land area amended with manure, “Leaching, runoff, 
and volatilization” (16% of additional uncertainty), references the amount of N lost through these 
processes, though there is variability in fertilizer and organic amendment activity data. There is 
also lack of measurement data on the volatilization of N gases that contribute to indirect soil 
N2O emissions, and indirect N2O emissions are not always measured. “Grazing intensity” (8.5% 
of additional uncertainty) uses an input schedule file to simulate the timing of grazing and other 
management activities, though this is only an estimation.  

(3) “Tillage” (15.5% of Tier 3 uncertainty). Three tillage practices are considered in the LULUCF 
inventory: conventional, reduced, and no-till. The most recent data on U.S. tillage activity is from 
2004 (Conservation Technology Information Center 2004). The definition of tillage practices and 
equipment is based on the 1995 USDA Cropping Practices Survey. Thus uncertainty stems from 
changes in uptake rates of various tillage practices since 2004 and changes in tillage practices 
and technologies. There is also a lack of direct data on how many no-till fields are under 
continuous no-till vs. intermittent tillage. This is estimated through expert elicitation. 

Prompt 3 asked about the importance of planned or suggested improvements, as described in the 
NGHGI (2018). We assigned each of the response choices a numerical value from 1-5: Not important = 
1, Slightly important = 2, Important = 3, Very important = 4, and Extremely important = 5, and analyzed 
the results based on the average of all responses. Importance was again placed on data needs and a 
better understanding of N2O fluxes: “Additional experimental site studies” which received a 4 and could 
improve model structural uncertainty through additional calibration; “Improved representation of 
drainage and freeze and thaw cycles“ which also received a 4 and could potentially improve model 
accuracy; and “Improved representation of emissions from small grain cropping” (3.8) which would help 
reduce DayCent’s overestimate of emissions from small grain cropping. Prompt 3 results are shown in 
Table T-16. 

Table T-16: RESULTS - Prompt 3 – importance of planned/suggested improvements 

Element Rating # of responses 
Improved representation of drainage and freeze-thaw cycles 4 7 

Additional experimental site studies 4 7 

Improved representation of emissions from small grain cropping 3.8 7 

Improved simulation of plant production 3.6 7 

Soil organic stock changes to a depth beyond 30cm 3.4 7 

Represent the influence of nitrification inhibitors  
and slow-release fertilizers on N2O emissions 

3 7 

Incorporation of Conservation Effects Assessment Project data 2.8 7 

Include above-ground biomass C changes 2.8 7 

Crop residue burning 2.4 7 

Missing fluxes of soil GHG emissions from Alaska and Hawaii 2 7 
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Section 2 
In this section, there were up to 19 responses per query (not every respondent completed the entire 
section). The average ranking for each of the 60 research, model development, or empirical data 
improvement needs was calculated and can be found in the Appendix below, and the top 10 most 
highly ranked needs are displayed in Table T-17. In the top 10 most highly rated needs, 7 out of 10 
scored a 4 (Very important) or above, which were nearly all related to model construction/validation 
needs, or building collaborative research/monitoring networks. This is unsurprising given that the 
NGHGI indicates that upwards of 80% of total cropland and grassland Tier 3 uncertainty stems from the 
structure of the DayCent model (Ogle et al. 2010, Annex 3.B. of the NGHGI 2018). Consistent with the 
findings from Section 1, all three of the primary soil research needs that were rated in the top 10 were 
related to the N cycle. 

Table T-17: RESULTS - Priority research, model, and data needs, rated by importance 

Category Research Need Rating # of 
responses 

Empirical data needs Build research site networks of N2O and CH4 soil fluxes and soil C measurements 
resulting from a diverse range of management activities (Schmidt et al. 2011). 

4.26 16 

Empirical data needs Establish a national soil monitoring network to produce for a full and consistent 
dataset of soil carbon measurements over time (Schmidt et al. 2011;  
Spencer et al. 2011). 

4.26 16 

Soil model 
development and 
intermodel 
comparison 

Improve model validation with updated comparisons to empirical regression 
models that are based on field experiments (Brevik et al. 2015; Kuzyakov 2010; 
Paustian et al. 2016; Schmidt et al. 2011; Stockmann et al. 2013). 

4.18 17 

Soil model 
development and 
intermodel 
comparison 

Increase collaboration among model developers, shifting to a community-
centered, open-source approach and integrating databases and computational 
tools (Paustian et al. 2016; Schmidt et al. 2011) 

4.09 17 

Primary soil research Influence of microbial activity – and other physicochemical and biological 
influences – on decomposition of organic matter/carbon, nitrogen and 
phosphorous cycling (Conant et al. 2011; Kuzyakov 2010; Schmidt et al. 2011; 
Schimel & Schaeffer 2012). 

4.00 19 

Soil model 
development and 
intermodel 
comparison 

Expand model inter-comparison programs (such as AgMIP) to identify cross-
cutting sources of uncertainty and opportunities for model improvement and 
cross-pollination. 

4.00 17 

Empirical data needs Obtain additional measurements of N2 production and losses from denitrification 
to clarify optimal N2 / N2O ratios for both modeling purposes and proper fertilizer 
management (Bakken & Frostegård 2017; S. DelGrosso, personal 
communication, October 1, 2018; Well et al. 2018). 

4.00 16 

Soil model 
development and 
intermodel 
comparison 

Reconcile bottom-up, process-based accounting of N2O fluxes with newer top-
down methods (e.g., atmospheric inversions) that capture N cycling from the 
global and regional perspective (Butterbach-Bahl 2013; Chen et al. 2016; 
DelGrosso et al. 2008; S. DelGrosso, personal communication, October 1, 2018; 
Nevison et al. 2018). 

3.91 17 

Empirical data needs Obtain additional experimental data on above-ground N uptake or direct 
measurements of N2O for cross-site optimization/better validation of large scale 
model estimates of soil N2O fluxes (S. DelGrosso, personal communication, 
October 1, 2018; Ehrhardt et al. 2018; Reay et al. 2012; Van Groenigen et al. 
2010). 

3.91 16 

Primary soil research Contribution of biochar feedstock type, production temperature and process, 
application rate, interactions with N sources, and more to the observed reduction 
of soil N2O emissions through biochar application (Cayuela et al. 2014). 

3.83 18 
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DISCUSSION 
Across Section 1 and Section 2, themes emerged around the need for more data and a better 
understanding of the N2O cycle. In Section 1, respondents indicated that DayCent organic matter 
formation representation, accuracy of soil data (both from the methods used to collect data as well as 
the depth to which the soils are sampled), and an incomplete accounting and understanding of the N 
cycle are major sources of uncertainty. This included the need to more accurately capture grazing 
intensity and the impact of manure on the N cycle, whether it be through nitrification and denitrification 
or timing of organic fertilization. One respondent noted that, “Timing of fertilization is a scheduling 
problem with potential impacts on N2O estimates. Our inability to represent fertilizer placement also 
contributes to uncertainty. Decomposition, especially at lower temperatures, can be problematic. 
DayCent's representation of the N cycle is complicated.” Another respondent echoed that sentiment, 
noting that, “We know manure is applied heavier around these spots, and the inventory is blind to this. 
We need better data on spatial manure applications, heavy manure N applications (and resulting high 
N2O) are being ignored due to this.” 

With regard to planned/suggested improvements, one of the highest ranked improvements asked for a 
more accurate freeze-thaw representation related to the N2O cycle. Another highly ranked improvement 
was, as described by one respondent: “resources for model improvement and evaluation using available 
observational data sets.” This sentiment was echoed repeatedly in Section 2, with the top rated priority 
needs centered around data and a desire to collect more comprehensive, consistent, and cohesive CO2, 
N2O, and CH4 soil measurements, and to make these measurements more transparent and publicly 
available. Respondents also noted that model developers themselves could benefit from more 
collaboration, since, as one individual noted, “data is not shared enough and large scale efforts and 
comparisons are underfunded.” Of the single primary research need rated as “Very important” – 
“Influence of microbial activity – and other physicochemical and biological influences – on 
decomposition of organic matter/carbon, nitrogen and phosphorous cycling” – one respondent noted, 
“We simply don't understand the dynamics - I suspect that microbial processes are 5, and until we 
unravel those drivers, we will struggle to make progress.” 

There were also consistent areas of general indifference, namely any uncertainties that could be rectified 
in the future, like time series inconsistencies (intermittent updating of NRI data), extrapolated data 
(expansion factors) or unmeasured soil GHG fluxes from Alaska and Hawaii, and any research needs 
around biochar (one individual noted, “Biochar and compost amendments benefits are over stated. Too 
many publications would not pass a simple 'back of envelope' calculation in regard to their benefit.”). 
Methane fluxes were also of low interest, likely due to the limited rice and other methane producing 
systems in the U.S. All of these areas either had a very low percentage of uncertainty attributed to them, 
or they were rated of the lowest importance, between a 2 and a 3 (Slightly important and Important).  

Overall, the themes that emerged from the LULUCF expert elicitation were clear, but based on a small 
sample population of responses. It is difficult to know how well these responses reflect the opinions of 
the broader scientific community, but they do appear to be consistent with available data from the 
literature and the NGHGI itself. Identifying uncertainty is inherently challenging – as one respondent 
noted, “we will always be limited by the difficulty of creating a generalized model that can represent the 
variability and processes of the natural world. DayCent sees the world as flat.” The findings from this 
expert elicitation are a first step at identifying the key areas that soil scientists believe can help to reduce 
uncertainty, and improve overall model development.  
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3.2 Carbon stock change and N2O in non-DayCent soils 

NGHGI METHODS 
There are several GHG flux categories in croplands and grasslands that follow Tier 1 or Tier 2 
methodology because it is not possible to source all the input data required to utilize DayCent. These 
categories are: direct N2O, mineral soils; CH4 rice cultivation; soil organic C stock change, mineral soils; 
soil organic C stock change due to biosolids, mineral soils; soil organic C stock change, drained organic 
soils; direct N2O, organic soils; indirect N2O volatilization and; indirect N2O, leaching and runoff.  

The U.S.-specific data for Tier 2 calculations come from various sources including: the Conservation 
Technology Information Center (CTIC) which provides classification of cropland area by tillage practice; 
the literature which describes U.S. carbon stock change factors and manure N amendments over time 
(Ogle et al. 2003; Edmonds et al. 2003, respectively); and reference carbon stocks which are estimated 
using the National Soil Survey Characterization Database.  

Uncertainty is generally determined through a Monte Carlo in which carbon fluxes are estimated 50,000 
times, and PDFs for U.S.-specific stock change factors, reference C stocks, and land use activity data.  

Table T-18: Cropland and grassland soil CO2, N2O, and CH4 flux estimates and uncertainties,  
Tiers 1 and 2 (NGHGI 2018) 

  2016 Flux Estimate  
(MMT CO2e) 

Lower/Upper Bound  
(MMT CO2e) 

Lower/Upper Bound  
(%) 

Organic  
and mineral  
C stock change 

Cropland remaining Cropland 26.4 21.9 / 30.9 17 

Land converted to Cropland 5.7 2.6 / 8.8 53 

Grassland remaining Grassland 2.6 0.9 / 4.3 66 

Land converted to Grassland -2.0 -4.1 / 0.1 107 

CH4 Rice cultivation 1.8 0.8 / 2.8 55 

Tier 1 and 2 Total 34.5 28.3 / 40.7 18 

Negative values indicate CO2 sequestration.  

PROJECT METHODS 
Similar to the challenges for Tier 3 cropland and grassland calculations, we were not able to replicate 
Tier 1 and 2 methods and perform our own contribution index analysis. The calculation methods are 
simple, but the NRI data (a primary input) is not publicly available. As an alternative, we used the 
contribution index results from Ogle et al. (2003) and applied these percentages to NGHGI (2018) GHG 
flux values.  

Ogle et al. 2003 runs their contribution index over the following elements of uncertainty for Tier 1 and 2 
calculations: land use (NRI data), tillage practices (CTIC data), reference carbon stocks, input factor, 
tillage factor, land use change factor, improved pasture, and carbon loss rate on organic soils.  

To use the Ogle et al. (2003) percentages, first we combined all Tier 1 and 2 cropland and grassland 
emissions estimates, and their respective 95% confidence intervals, using error propagation (Table 8). 
This step was required because the Ogle et al. (2003) percentages are reported in aggregate, not for 
individual category’s emissions estimates. Then we multiplied the contribution index for each Ogle et al. 
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2003 element by the magnitude of the total 2016 95% confidence interval from Table T-18. This allowed 
us to derive the magnitude of uncertainty contribution in terms of MMT CO2 for each element. 

RESULTS 
The highest contribution to uncertainty stemming from carbon loss rate from organic soils (4.39 MMT 
CO2e), followed by land use change factor and tillage factor (3.43 MMT CO2e for each) (Table T-19).  

Table T-19: RESULTS - Contributions to uncertainty for Tier 1, 2 cropland and grassland soils 

Input Contribution to uncertainty (%)  
from Ogle et al. (2003) 

Contribution to total uncertainty  
(MMT CO2e) 

Land use 4.6 0.57 

CTIC 3.1 0.38 

Reference stock <1.0 0.01 

Input factor <1.0 0.01 

Tillage Factor 27.7 3.43 

Land use change 27.7 3.43 

Improved pasture 1.5 0.19 

Carbon loss rate, organic soils 35.4 4.39 

Total 100 12.42 

 

DISCUSSION 
There is opportunity to further refine this analysis for greater granularity and applicability to current 
inventory methods. The contribution index values from Ogle et al. (2003) were only calculated for a 
subset of land use and management activities. Uncertainties are also present in fertilization management 
– specifically around manure amendments, biosolid amendments, residue N inputs, wetland reserves, 
emission factors for various soil types, and land area. Note that we do not include any N2O Tier 1 
estimation in this analysis because N2O results are not reported by Tier 3 vs. Tier 1 in the NGHGI so we 
assume they all fall under Tier 3 for simplicity (Tier 3/DayCent covers 91% of U.S. direct soil N2O 
emissions).  

This analysis is also unable to dissect uncertainty attribution across different components of the Tier 1 
and 2 estimates – despite there being nine distinct land types, each subject to particular C stock change 
equations (as mentioned earlier – e.g., indirect N2O from leaching and volatilization). Additionally, this 
analysis is based on data that is over 15 years old, and calculations that were performed three years 
before Century/DayCent was first used for Tier 3 cropland and grassland accounting, so the contribution 
index results from Ogle et al. (2003) are derived from all U.S. soils, not the subset of soils currently 
handled under Tier 1 or 2. A new analysis replicating the level of detail we were able to achieve in other 
sections would have been ideal but unfortunately was not possible with available data. 
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3.3 Non-CO2 from grassland fires 

NGHGI METHODS 
The NGHGI quantifies CH4 and N2O emissions from grassland fires for 1990–2014 using the same 
general equation as is applied for forest fire emissions (Equation 3). This methodology involves the 
multiplication of four factors:  

(1) Burned area  
(2) Fuel availability (mass of dry matter available per unit area)  
(3) Combustion factor (mass of dry matter burned per mass of dry matter available)  
(4) Emission factor (mass of CH4 or N2O emitted per mass of dry matter burned) 

Grassland fire emissions reported by the NGHGI account for the combustion of herbaceous biomass on 
managed grasslands in the conterminous United States. The NGHGI does not quantify emissions from 
the burning of woody biomass on grasslands, nor does it quantify emissions from grassland fires in 
Alaska. Estimates of grassland burned area are derived by combining burned area estimates from the 
Monitoring Trends in Burn Severity (MTBS) dataset (MTBS Data Summaries 2015) with estimates of 
managed grassland area from (1) the 2012 National Resources Inventory for non-federally owned areas 
(Nusser and Goebel 1997; USDA–NRCS 2015) and (2) the National Land Cover Dataset (NLCD) for 
federally owned areas (Fry et al. 2011; Homer et al. 2007; Homer et al. 2015). Default factors from IPCC 
(2006) are applied for fuel availability (4.1 metric tons dry matter per ha) and emission factors (2.3 g CH4 
emitted per kg dry matter burned and 0.21 g N2O emitted per kg dry matter burned). A combustion 
factor of 1 is assumed; that is, it is assumed that all available herbaceous biomass is completely 
combusted. The global warming potentials for CH4 and N2O on 100-year time horizons (IPCC 2007) are 
used to convert non-CO2 emissions to CO2 equivalents.  

Because the input factors for this equation were not recalculated for years beyond 2014 in the NGHGI 
that covers 1990–2016, grassland fire emissions for years beyond 2014 are quantified using linear 
regression with autoregressive moving-average (ARMA) errors. The NGHGI does not specify how many 
lags are included in the ARMA model or what surrogate data is included, if any. The 95% confidence 
interval reported in the NGHGI (2018) is derived using this regression model; this is distinct from the 
uncertainty estimation for non-CO2 emissions from forest fires, which utilizes Monte Carlo iterations and 
the distributions of the underlying inputs. 

PROJECT METHODS  
Unlike the NGHGI, we quantify the 95% confidence interval for non-CO2 emissions from grassland fires 
using Monte Carlo iterations (n=1,000,000) based on Equation 3. We separately quantify the 95% 
confidence intervals for CH4 and N2O emissions from grassland fires and additionally estimate the 
percent contribution to uncertainty from each of three uncertain parameters: grassland burned area, fuel 
available, and emission factor. We focus our calculation on year 2014 since this is the most recent year 
for which burned area estimates are available in the NGHGI (2018). The NGHGI reports total grassland 
burned area in 2014 for the conterminous United States as 1,659,000 ha. Following the burned area 
parameter for forest fires, we assume that grassland burned area is likewise normally distributed with a 
standard deviation that is 4% of the mean (66,360 ha). Similarly, for the following parameters, we assume 
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the same distribution types for grassland fires as are assumed for forest fires: (1) emission factors (normal 
distributions, truncated at zero) and (2) fuel availability (lognormal distribution). The standard error for 
fuel availability (3.1 metric tons dry matter ha-1) and the standard deviations for the emission factors (0.9 
g CH4 emitted kg-1 [dry matter burned] and 0.1 g N2O emitted kg-1 [dry matter burned]) are from IPCC 
(2006). No uncertainty is attached to the global warming potentials. We assume independence of all 
uncertain variables in the Monte Carlo analysis. We do not consider the ARMA errors as we focus our 
calculation on year 2014. 

RESULTS  
The 2014 estimates and 95% confidence intervals for CH4 and N2O emissions from grassland fires are 
shown in Table T-20. The estimates for 2014 are identical to those reported in the NGHGI (2018) (0.4 
MMT CO2e from CH4 and 0.4 MMT CO2e from N2O). The NGHGI reports uncertainty only for the 2016 
estimate. We find slightly larger relative uncertainties in the upper direction (≥225% for 2014 estimate) 
than the NGHGI reports for the 2016 estimate (145%). 

Table T-20: Uncertainty estimates for non-CO2 emissions from grassland fires  

Gas 2014 estimate 
(MMT CO2e) 

Lower bound a 
(MMT CO2e) 

Upper bound a 
(MMT CO2e) 

Lower bound b  
(%) 

Upper bound b 

(%) 
CH4 0.4 0.0 1.3 -100 225 

N2O 0.4 0.0 1.5 -100 275 

Total 0.8 0.1 2.7 -88 238 

(a) Lower and upper bounds correspond to 2.5th and 97.5th percentiles (95% confidence interval). 
(b) The relative uncertainties are calculated as a percentage of the 2014 estimate. 

The results of the contribution index analysis, which is based on total non-CO2 emissions from grassland 
fires (i.e., total CH4 and N2O emissions as CO2 equivalents), are shown in Table T-21. As we found for 
forest fires, the fuel availability makes the largest contribution to uncertainty (99%). The burned area and 
emission factors contribute only negligibly to total uncertainty. 

Table T-21: RESULTS - Contributions to uncertainty for non-CO2 emissions from grassland fires 

Variable held constant Range of 95% confidence interval  
(MMT CO2e) 

Contribution to uncertainty  
(%) 

Contribution to uncertainty 
(MMT CO2e) 

None (all vary) 2.52 – – 

Burned area 2.51 0.3 0.0 

Fuel availability 0.96 99.1 2.5 

Emission factors 2.51 0.6 0.0 

 

DISCUSSION  
Total non-CO2 emissions from grassland fires are likely underestimated since the calculation excludes 
emissions from: (1) grassland fires in Alaska and (2) combustion of woody biomass on all grasslands. We 
estimate the non-CO2 emissions associated with combustion of woody biomass on managed non-
Alaskan grasslands in Section 3.5, Omitted GHG fluxes in cropland and grassland.  
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3.4 Carbon stock change in drained organic cropland  
and grassland soils  

NGHGI METHODS 
To estimate organic soil carbon stock changes due to drained organic soils, a Tier 2 methodology is 
followed, using U.S.-specific carbon loss rates from Ogle et al. (2003) and land area data from the 2012 
NRI. These are applied to IPCC default equations, and uncertainty is calculated using a Monte Carlo 
analysis with 50,000 iterations. A surrogate data method is used to estimate carbon emissions from 2012 
to 2016, which also contributes to uncertainty. 

DISCUSSION 
Due to the small contribution of carbon stock changes from drained organic soils (Table T-22), we did 
not perform further attribution analysis beyond that reported in the NGHGI (2018). 

Table T-22: RESULTS – Contributions to uncertainty for drained organic cropland and  
grassland soils  

Variable held constant Range of 95% confidence  
interval (MMT CO2e) 

Contribution to uncertainty  
(%) 

Contribution to uncertainty  
(MMT CO2e) 

None (all vary) 6.7 – – 

Cropland remaining Cropland 2.4 91.2 6.1 

Land converted to Cropland 6.4 6.4 0.4 

Grassland converted to Grassland 6.6 1.8 0.1 

Land converted to Grassland 6.7 0.6 0.0 

 

3.5 Omitted GHG fluxes in cropland and grassland 

The objective of this project is not only to estimate uncertainty attribution of current NGHGI calculations, 
but also to identify omitted GHG fluxes in the NGHGI. Here we identify four potential omitted fluxes 
(woody biomass and litter; microbial methane sink; certain sinks and sources on federal cropland and 
grassland; and other croplands) described in the cropland/grassland NGHGI sections. We describe the 
methods and results of first order estimates of each omitted GHG flux. 

Other Croplands 
The NGHGI (2018) notes that emissions from 0.8% of cropland is not accounted for (updated to 0.3% in 
the 2019 NGHGI), due to limited resources and/or understanding of greenhouse gas emissions from 
those management systems. According to the NGHGI and the NGHGI team, these omitted areas are 
aquaculture, Alaska, and the U.S. territories. Per the NGHGI, Alaskan croplands represented 28,700 
hectares in 2016, and according to the latest 2013 U.S. Census of Aquaculture, aquaculture represented 
289,570 hectares, the most recent data available. These two amount to 318,270 hectares, with the 
remainder missing cropland found in U.S. territories and possibly other unclassified cropland types. We 
estimate the omitted flux from Alaskan croplands below in Section 6: Alaska, Hawaii, and U.S. Territories. 
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Furthermore, note that N2O from aquaculture is included in Coastal Wetlands Remaining Coastal 
Wetlands, so aquaculture is not completely omitted from the NGHGI. See more in the Wetlands section 
of this document below.  

Biomass and litter  
IPCC guidance calls for the reporting of carbon stock changes in all significant carbon pools in croplands 
and grasslands. Yet only soil carbon is accounted for in the U.S. NGHGI for croplands and grasslands 
(except for conversions of forest to cropland or grassland and vice versa). Here we provide a first order 
estimate of the omitting GHG fluxes from woody biomass and litter on cropland remaining cropland and 
grassland remaining grassland by focusing on three land cover types on cropland and grassland that 
have significant woody biomass and, as a result, potential for significant carbon flux: 

• Agroforestry 
• Fruit and nut orchards 
• Woodlands 

Our estimates below do not account for carbon loss due to fire, which would need to be accounted for 
in the NGHGI. Each section below describes the literature review and calculation methods we used to 
derive annual carbon flux estimates from these land cover types. 

AGROFORESTRY 
Net carbon emissions from agroforestry across the United States were estimated using land area data 
from USDA and emission factors from literature. Four types of agroforestry were considered: windbreaks, 
riparian buffers, alley cropping, and silvopasture. High and low emission estimates were calculated by 
multiplying land area by per area-per year emissions factors, and applying a legacy effect to all estimates 
(windbreaks, reported in linear feet by the USDA, were first converted to hectares). 

The most recent USDA agroforestry data available is found in the report Agroforestry: USDA Reports to 
America, Fiscal Years 2011 to 2012 (USDA 2012). The data is determined by the number of acres that 
were enrolled in USDA conservation programs. It should be noted, however, that agroforestry 
established through these programs is only a portion of what occurs in the U.S. and does not include 
landowners that applied agroforestry without USDA assistance, or those who received assistance before 
2008. The USDA report notes specific acreage benefiting from the programs for 2011 and 2012, as well 
as the total acreage for the period of FY 2008-2012. To estimate the yearly acreage in 2008 to 2010, the 
acres for 2011 and 2012 were subtracted from the aggregated acres over 2008-2012, and then divided 
by three. All acre values are subsequently converted to hectares. To further extend the timeline of 
estimated land area under agroforestry before and after FY 2008-2012, we used budget numbers for 
three federal conservation programs – the Conservation Stewardship Program (and its predecessor, the 
Conservation Security Program), Conservation Reserve Program, and the Environmental Quality 
Incentives Program and derived ratios of total enrolled agroforestry acres for each practice to total 
conservation budget for 2008 to 2012, the years with known acreage. The average of these ratios (across 
2008-2012) for each agroforestry practice were then multiplied by the total budget numbers for the 
years preceding 2008 and following 2012, providing a set of acreage estimates for 2004 to 2016, as 
illustrated in Table T-23. Land area in the white boxes represent estimates calculated using the budget 
ratios; the land area in blue is reported by USDA (with annual estimates derived from the 2008-2012 
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total acreage and 2011, 2012 annual acreage). For details on this calculation, see the Spreadsheet 
Appendix. 

Table T-23: Reported and estimated hectares of USDA-supported agroforestry practices (USDA 
2012) 

  2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Windbreaks 4,754 5,130 5,412 5,506 6,093 6,093 6,093 6,389 5,269 3,990 7,295 7,229 7,787 

Riparian 16,202 17,484 18,447 18,766 16,643 16,643 16,643 23,767 31,084 13,597 24,862 24,636 26,539 

Alley cropping 227 245 259 263 419 419 419 82 22 191 349 346 373 

Silvopasture 128 138 145 148 146 146 146 236 134 107 196 194 209 

Blue highlighted cells show annual values reported by/derived from USDA (2012). White cells show values derived 
from annual federal conservation budgets for 2004-2007, 2013-2016. 

Emissions factors for different types of agroforestry practices were sourced from a paper which estimates 
carbon sequestration potential in the U.S. through a meta-analysis of peer reviewed papers and 
government documents (Udawatta and Jose 2012). We had initially considered a conservative estimate 
from Nair and Nair 2003, though in correspondence with the primary author, we were advised that their 
data was outdated. Thus, the emissions factors from Udawatta et al. (2012) were multiplied by the yearly 
USDA land area data and estimates over the period of 2004 through 2016 (Table T-24). The paper 
explicitly notes that its carbon sequestration rates cover aboveground and belowground biomass and 
soil organic carbon, but it does not explicitly discusses whether dead wood or litter is included in their 
estimates (although it may be assumed that litter is considered because of the discussion of litter from its 
list of reviewed papers).  

Table T-24: Agroforestry emissions factors from literature (Udawatta and Jose 2012) 

Agroforestry practice Emissions Factor (Mg C ha-1 yr-1) 
Windbreaks 0.96 

Riparian buffers 2.6 

Alley cropping 3.4 

Silvopasture 6.1 

 

It is assumed that even as land area under agroforestry practices officially exit the federal program, they 
continue to provide carbon sequestration benefits. Legacy effects, or an ongoing discounted 
sequestration rate, are therefore applied to agroforestry land for all future years after enrollment in 
federal programs.  

To estimate legacy effects, each annual carbon sequestration rate for a given enrolled hectare was 
discounted at 75% for the initial five years following enrollment, followed by a 50% discount for the 
remainder of the time series. For example, the carbon sequestration rate for a hectare enrolled in an 
agroforestry practice in 2004 was 100% of the literature-derived emissions factor in 2004, was 
discounted by 75% for the years 2005 to 2009, and then at 50% from 2010 onwards. For each year, the 
total carbon stock changes from all the previous year’s legacy effects were summed and then added to 
any carbon stock change from newly enrolled land area in that year.  
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Equation 4: Carbon stock change from agroforestry 

∆𝐶𝑂TU= = V(𝐴U= ∗ 𝐸𝐹U) +	(𝐷6Z[ @ 𝐴U? ∗ 𝐸𝐹U) +
=Z6

?5=Z[

(𝐷\]@𝐴U? ∗ 𝐸𝐹U)
=Z]

?5^

_ ∗
44
12 

Where: 

∆𝐶𝑂T= = Total carbon stock change for agroforestry practice i in year t, metric tons CO2 

𝐴U= = Land area under agroforestry practice i in year t, hectares 

𝐸𝐹U = emissions factor for agroforestry practice i, Mg C/ha/year 

𝐷6Z[ = Discount factor for lagged years 1 to 5 

𝐷\] = Discount percentage for lagged years 6 and beyond 
bb
6T

 = conversion factor from metric tons C to metric tons CO2 

The full set of calculations may be found in the Spreadsheet Appendix. Results from the five-year period 
of 2011 to 2016 are included here in Table T-25. 

Table T-25: RESULTS – Omitted GHG flux estimate for agroforestry carbon stock change 

  2011 2012 2013 2014 2015 2016 
C stock change (MMT CO2e) -1.17 -1.37 -1.39 -1.58 -1.73 -1.91 

Negative values indicate CO2 sequestration. 

ORCHARDS 
The literature has suggested that net emissions from orchards are minimal, due to the removal of 
orchard trees at the end of their fruit-bearing lifetime (typically around 25-30 years). We have not found 
any additional evidence to improve upon this general belief, despite our own Tier 2 analysis to 
investigate otherwise. We sourced perennial crop acreage data from the USDA Agricultural Census and 
multiplied it by the IPCC-recommended factor for biomass accumulation rate in perennial above-ground 
woody biomass to calculate total net carbon flux. We accounted for the replacement of these perennials 
after reaching maximum productivity by subtracting from net carbon flux an estimate of orchard land 
area harvested and replaced, multiplied by the IPCC-recommended factor for biomass carbon loss rate 
of perennial above-ground woody biomass. This returned minimal net carbon emissions, which is in line 
with NGHGI statements regarding orchard carbon fluxes. 

WOODLANDS 
Although biomass and litter are also not accounted for in the grassland land category (with the 
exception of Forests Converted to Grassland), the NGHGI (2018) includes a preliminary estimate of 
grassland woody biomass for regions in the western U.S., which was found to be approximately 20 MMT 
CO2 of sequestration. This estimate remained the same for 2017, as reported by the 2019 NGHGI. This 
pilot effort used the FIA database to estimate carbon stock changes and densities across 12 states in the 
western U.S., covering two FIA forest type groups, pinyon-juniper and woodland hardwoods. There are 
plans to expand this analysis and incorporate it in future inventories. Further note that forest to grassland 
conversion CO2 estimates are discounted by about 50% in Western states, with the assumption that 
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forests are being converted to woody savannah-grassland. It is not clear to what extent the 20 MMT CO2 
estimate overlaps with this 50% discount, but there is certainly woody-savannah grassland would not fall 
under forest to grassland conversion. Therefore the 20 MMT CO2 estimate might be considered an 
upper bound of the woody savannah-grassland total omitted GHG flux. 

LITTER 
The NGHGI (2018) indicates that dead wood and litter carbon are insignificant in croplands and 
grasslands and are therefore not calculated as part of the NGHGI (outside of forest land conversions, in 
which dead wood and litter carbon stock changes are accounted for). The IPCC further notes that dead 
organic matter is an insignificant carbon flux except in agroforestry systems. In croplands, litter, like 
leaves or crop residue, can be incorporated into the soil through tillage and decomposition, thereby 
indirectly accounted for through soil organic carbon flux estimates, which are already closely accounted 
for in the NGHGI cropland and grassland sections. A literature search did not reveal any additional 
sources of data that would help estimate the carbon stock changes from dead organic matter in 
croplands and grasslands, and to date, the USDA does not appear to collect data relevant to this source. 
In grasslands, dead wood and litter are only considered in forest land conversions, though there is an 
initiative to calculate the omitted carbon stock change from woodlands. In summary, while there are 
consistent claims across authoritative sources that dead organic matter does not contribute significantly 
to carbon flux on croplands and grasslands, there also appears to be a dearth of data that to verify this 
claim. 

BIOMASS AND LITTER RESULTS 
In sum, omitted carbon sequestration from biomass and litter in croplands and grasslands is 
approximately 21.9 MMT CO2e, after summing the carbon estimates for agroforestry and woodlands in 
2016 (the most recent year of available data). This represents over 60% of the annual carbon stock 
change (34 MMT CO2e) currently captured in cropland and grassland – a significant omission that, if 
included in the NGHGI, would increase the total carbon sequestration estimates across both land 
categories. 

Non-CO2 emissions from combustion of woody biomass in grassland fires 
The NGHGI quantifies CH4 and N2O emissions from grassland fires in the conterminous United States; 
however, the estimation by the NGHGI considers only the consumption of herbaceous biomass and 
does not consider consumption of any woody biomass existing on grasslands. We use a Tier 1 method 
from IPCC (2006) to estimate the CH4 and N2O emissions from the burning of woody biomass on 
grasslands in the conterminous United States. We apply the same emissions equation (Equation 3) from 
IPCC (2006) that we applied to estimate non-CO2 emissions from both (1) forest fires (Section 2.2) and (2) 
herbaceous biomass combustion during grassland fires (Section 3.3).  

The input parameters for the emissions calculation are shown in Table T-26. The NGHGI (2019) estimates 
that “land with perennial woody biomass” (we will refer to this below as “woodlands”) accounted for 
roughly 23.5 Mha in the conterminous United States and southeast and southcentral coastal Alaska in 
2017. The NGHGI classifies this land area as either Grassland Remaining Grassland or Land Converted to 
Grassland.  
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Table T-26: Input parameters for the estimation of non-CO2 emissions from woodland fires 

Input parameter Estimate 
Burned area of woodlands  141,000 ha 

Fuel consumption factor a 14.3 tons dry matter burned ha-1 

Emission factor (CH4) a 2.3 g CH4 emitted kg-1 [dry matter burned] 

Emission factor (N2O) a 0.21 g N2O emitted kg-1 [dry matter burned] 

(a) IPCC (2006). 

We assume that 0.6% of woodland area is burned, based on the percentage of managed grassland area 
in the conterminous United States that was burned in 2014, which is the most recent year for which the 
NGHGI reports burned area estimates for grasslands. The percentage of grassland area burned for the 
conterminous United States is based on (1) the area of managed grassland burned in the conterminous 
United States in 2014 (1.659 Mha) reported by the NGHGI (2018) and (2) our estimate of the total area of 
managed grasslands in the conterminous United States for 2014 (275.3 Mha), which we calculated by 
subtracting the area of grassland in Alaska (50 Mha; NGHGI 2018) from the total area of managed 
grassland in all 50 states for 2014 (325.3 Mha; Table 6-6 of NGHGI 2018). Our estimate of total area of 
grassland in the conterminous United States in 2014 is a rough approximation since (1) it includes 
Hawai’I grassland and (2) the area of grassland in Alaska that is reported by the NGHGI only includes 
land belonging to the Grassland Remaining Grassland category and is not specific to individual years. 

With reference to Equation 3, the fuel consumption factor in Table T-26 represents the product of the 
fuel availability and the combustion factor. We apply the fuel consumption factor for “all shrublands” 
from Table 2.4 of IPCC (2006). The CH4 and N2O emission factors are from Table 2.5 of IPCC (2006) and 
correspond to the combustion of “savanna and grassland.” These emission factors are the same as those 
that are applied to estimate emissions from the combustion of herbaceous matter from grassland fires in 
Section 3.3. We apply the 100-year global warming potentials from IPCC (2007) to convert the CH4 and 
N2O emissions to a common scale: 25 kg CO2e kg-1 [CH4 emitted] and 298 kg CO2e kg-1 [N2O emitted]. 

The results of the omitted GHG flux estimation are shown in Table T-27. We estimate annual emissions 
of 4,637 tons CH4 (0.12 MMT CO2e) and 423 tons N2O (0.13 MMT CO2e) from woodland fires. We 
assume that these estimates account for the combustion of both woody biomass and herbaceous matter 
on these woodlands. To isolate the emissions from only woody biomass, we estimate the emissions from 
the combustion of herbaceous matter on the 141,000 ha of woodlands that are burned and subtract 
these emissions from the total woodland fire emissions.  

To quantify emissions from the combustion of herbaceous matter, we use the same emission factors  
(2.3 g CH4 emitted kg-1 [dry matter burned] and 0.21 g N2O emitted kg-1 [dry matter burned]) and fuel 
availability (4.1 metric tons dry matter ha-1) from IPCC (2006) as applied in Section 3.3. We follow the 
NGHGI in assuming that all available herbaceous matter is combusted (i.e., combustion factor = 1). We 
estimate that the combustion of herbaceous matter during woodland fires results in emissions of 1,330 
tons CH4 (0.03 MMT CO2e) and 121 tons N2O (0.04 MMT CO2e). Thus, the combustion of woody 
biomass (net of herbaceous biomass emissions, which are already accounted for in Section 3.3) results in 
emissions of 3,307 tons CH4 (0.09 MMT CO2e) and 302 tons N2O (0.09 MMT CO2e). 



 

Reducng Climate Policy Risk Technical Appendix  54 

Table T-27: RESULTS – Omitted GHG flux estimate for non-CO2 emissions from woody biomass in 
grassland fires 

Biomass type Emitted CH4  
(metric tons CH4) 

Emitted CH4  
(MMT CO2e) 

Emitted N2O  
(metric tons N2O) 

Emitted N2O  
(MMT CO2e) 

CH4 and N2O  
(MMT CO2e) 

Woody biomass and  
herbaceous matter 

4,637 0.12 423 0.13 0.25 

Herbaceous matter 1,330 0.03 121 0.04 0.07 

Woody biomass (Total) 3,307 0.09 302 0.09 0.18 

 

Federal cropland and grassland  
While most LULUCF GHG fluxes are estimated for federal land, there are some exceptions: soil C stock 
change in organic federal grassland soils, and indirect and direct N2O emissions from federal croplands 
and grasslands with the exception of pasture/range/paddock (PRP) sources of N2O. This section 
estimates the N2O omitted fluxes by using existing EPA land representation data for 2016 (shared by 
NGHGI leads) and 2016 fluxes reported in the NGHGI (2018), to determine average N2O emission 
factors for non-federal land. These emission factors are then applied to the federal land areas to 
calculate a first order estimate of the omitted fluxes. The following equation was used: 

Equation 5: Emissions from federal croplands and grasslands 

𝐸c = (
𝐸F
𝐴F
) ∗ 𝐴c 

Where: 

𝐸c = Emissions from omitted federal cropland/grassland flux 

𝐸F = Emissions from equivalent non-federal cropland/grassland flux per the NGHGI 

𝐴F = Area of non-federal land type 

𝐴c = Area of omitted federal land type 

We acknowledge that in reality, federal and non-federal lands are managed differently and would 
therefore have different emissions factors, this methodology is being used for purposes of first order 
approximation. 

Note that we could not use this approach to estimate CO2 emissions from organic soils in federal 
grasslands because we do not have data on the area of organic cropland/grassland soils on federal land. 
A very rough approximation, deriving organic soil C stock change over the entire non-federal cropland 
and grassland area, and assuming organic soil is present in equal proportions on federal and non-federal 
land, indicates this flux would likely be sizeable (2.8 MMT CO2), but we don’t include this value in our 
final results.  

To estimate N2O emissions from federal cropland, the total N2O emissions from non-federal cropland 
(direct and indirect) was divided by total non-federal cropland area (including all Land converted to 
Cropland) and multiplied by the total federal cropland area (including all Land converted to Cropland).  
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To estimate omitted direct and indirect N2O on federal grasslands, direct and PRP N2O emissions and all 
indirect N2O emissions from non-federal grasslands were subtracted from the total direct and indirect 
N2O emissions on non-federal grasslands, since direct and indirect PRP N2O is not omitted from federal 
land. Because indirect N2O emissions are not reported by original source, we conservatively attributed 
all grassland indirect N2O emissions to PRP manure. This net emissions total was divided by total non-
federal grassland (including all Land converted to Grassland) and multiplied by the area of federal 
grassland (including all Land converted to Grassland). Note it was not necessary to subtract out PRP N2O 
emissions from cropland because there is little grazing of cattle or other animals on cropland. These 
calculations can be found in the Spreadsheet Appendix. 

In sum, it is estimated that the current NGHGI omits 21.76 MMT CO2e from federal lands, a sizeable 
value. This is nearly 10% of the total N2O from U.S. croplands and grasslands as reported for 2016 
(NGHGI 2018). 

Additional uncertainty on federal lands includes lack of specificity of crop type and input intensity, which 
we did not attempt to quantify here.  

Soil microbial methane sink 
The NGHGI accounts for methane fluxes associated with rice production, fires, wetlands, and drained 
organic soils. Mineral soils are also responsible for a significant methane sink – driven by methanogens – 
that is not currently considered in the NGHGI, and possibly for good reason. It is not clear how much of 
the microbial methane sink can be attributed to anthropogenic management. Furthermore, the soil 
methane sink is directly tied to the atmospheric lifetime of methane, and is likely already considered to 
some extent in the calculation of methane global warming potential (GWP). However, for purposes of 
NGHGI accounting, it is useful to have an understanding of all sources and sinks and therefore data to 
estimate this sink at the national level has value. If countries decide to estimate the soil methane sink via 
GHG inventories, there will need to be a process to decide to account for its contribution to methane 
GWP as well as any methane mitigation efforts. 

To calculate this omitted GHG flux, we multiply the total estimated area of cropland, grassland and 
forest mineral soils in the U.S. by emissions factors identified in the literature. We included forests in this 
analysis because the literature suggests they account for a significant part of the soil methane sink which 
was important to consider when fully assessing CH4 fluxes from soils.  

From the total respective area of these three land types, we subtracted out the area for Alaska since the 
state is largely unaccounted for in the 2018 NGHGI. To account for the removal of organic and wet soils, 
which tend to have limited methane oxidation due to their high soil water content, the percentage of soil 
comprised by mineral soil was found by dividing the mineral soil area of each land type into the total 
land area. Then, these mineral soil percentages were multiplied by the land area, not including Alaska. 
For grassland and cropland, this land area was then multiplied by the CH4 uptake rates by land type as 
noted in Dutar and Verchot (2007), a meta-analysis of 120 studies that reported CH4 fluxes from different 
terrestrial biomes: 2.32 kg CH4 ha-1 yr-1 for grasslands, and 1.23 kg CH4 ha-1 yr-1 for croplands. These CH4 

fluxes were similar to those noted in an earlier paper authored by one of the NGHGI soil leads: 2 kg CH4 
ha-1 yr-1 for grasslands and 1 kg CH4 ha-1 yr-1 for croplands (DelGrosso et al. 2000). 

The literature suggests that methane uptake rates are consistently higher in forests compared to all other 
ecosystems, and soil texture (coarse, medium, and fine) is of particular importance in temperate forests 
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(DelGrosso et al. 2000; Dutar and Verchot 2007). Given this distinction, forests were treated with greater 
granularity. Using data from the FIA and SSURGO, it was determined that U.S. forests are comprised of 
21% clay soil, 35% silt, and 44% sand. These soil textures were used as proxies for the soil textures used 
in the literature (clay = coarse; silt = medium; sand = fine). The soil land area without Alaska was then 
multiplied by each of these percentages to estimate the breakdown of forest soils by the three soil 
textures. Then, using uptake factors found in Dutar and Verchot (2007) , each soil texture was multiplied 
by its respective CH4 uptake rate (7.5 kg CH4 ha-1 yr-1 for coarse soils, 5.5 kg CH4 ha-1 yr-1 for medium soil, 
and 2.6 kg CH4 ha-1 yr-1 for fine soils) to estimate total CH4 uptake rate by U.S. forest soils. 

The combined soil methane sink is 25.12 MMT CO2e (14.67 MMT CO2e for grassland, 6.64 MMT CO2e 
for cropland, and 3.81 MMT CO2e for forests). 

Table T-28: RESULTS – Omitted GHG flux estimate for soil microbial methane sink 

Land type Area of mineral soil (ha) CH4 flux factor (CH4 ha-1 yr-1) Total MMT CO2e 
Grassland 189,687,098 2.3 14.7 

Cropland 161,831,536 1.2 6.6 

Forest – coarse 5,173,808 7.5 1.3 

Forest – medium 8,623,013 5.5 1.6 

Forest - fine 10,840,359 2.6 0.9 

Total   25.1 



 

Reducng Climate Policy Risk Technical Appendix  57 

4 Settlements 

4.1 Carbon stock change in urban trees 

NGHGI METHODS 
Carbon stock change in urban trees is the primary driver of GHG fluxes from Settlements, as reported in 
the NGHGI (2018). This estimate is calculated for each state using a combination of state-level and 
nationally averaged values.  

Determining the amount of land classified as “settlement” is a necessary but challenging component of 
calculating the carbon flux from urban trees. The National Resources Inventory (NRI) provides an 
estimate of settlement area, but because this dataset has not been updated since 2012 as of the 2018 
NGHGI, settlement area from National Land Cover Database (NLCD) is utilized for Inventory years since 
2012. For the 2018 NGHGI and for the estimation described here, classifications of urban area, as 
defined by population density from the US Census Bureau, were used as a proxy for settlement area, 
although it has been identified as an underestimate of overall settlement area compared to the NGHGI 
land representation estimates. Starting in the 2019 NGHGI, however, settled area was determined using 
both satellite images of tree cover and the NLCD, more closely matching the method for determining 
national land cover as other components of the Inventory and providing a much closer estimate to 
settlement land area determined by NRI, as outlined in Table T-29. This change in method has increased 
the overall urban tree sequestration estimate by approximately 33% given the higher land area classified 
as settlement.  

Table T-29: Comparison of settlement land area classifications (NGHGI 2018) 

Land area definition Settlement Developed Urban 
Source National Resources Inventory 

(NRI) 2011 
National Land Cover Dataset 
(NLCD) 2011 

US Census based on 
population area 2010 

Inventory Year(s) Used Land Representation,  
all Inventory years 

2019 Publication year 2018 Publication year and 
before 

Hectares 42,519,645 45,411,098 27,347,901 

 

Once settlement area is estimated, state-level average urban tree cover percentages are derived. For 
the 2018 NGHGI and previous inventories, values were taken from Nowak and Greenfield (2013) for 
each state, combining the values designated as “Urban” and “Community” areas in table 1 of Nowak 
and Greenfield (2013). For the 2019 NGHGI and moving forward, NLCD is used to estimate settlement 
area by aggregating NLCD classifications of “open space”, “low intensity”, “medium intensity”, and 
“high intensity” by state. These sum to 𝑇𝐶?dFef in Equation 6. Because NLCD has been demonstrated to 
underestimate tree cover (Nowak and Greenfield 2010), photo interpretation of tree cover was 
completed for the years 2011 and 2016 to determine national values for urban tree cover, expressed in 
percentages. These were then applied to state-level values to scale up state-level NLCD estimates of 
urban tree cover percentages. 
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Equation 6: Percent urban tree cover by state (NGHGI 2018) 

𝑇𝐶? = 𝑇𝐶?dFef ∗
𝑇𝐶dghi=i		
𝑇𝐶ddFef

 

Where: 

𝑇𝐶? = Percent urban tree cover in state s used in NGHGI calculations 

𝑇𝐶?dFef= Percent urban tree cover in state s as determined by the NLCD 

𝑇𝐶dghi=i= National percent tree cover in urban areas using photo-interpretation 

𝑇𝐶ddFef = National percent tree cover in urban areas as determined by the NLCD 

State-level estimates of urban tree cover area, estimated by multiplying settlement land area by percent 
tree cover, are then multiplied by a gross sequestration value, taken primarily from Nowak (2013). Gross 
sequestration values are derived from sample plots in several U.S. cities using the i-Tree model (Nowak 
et al. 2008), which estimates both carbon storage and sequestration rates. These gross sequestration 
rates vary from 0.168 kg C/m2 cover/year (Alaska) to 0.581 kg C/m2 cover/year (Hawaii) based on tree 
species mix, tree density, and climatic factors.  

To determine the net sequestration ratio, defined as gross sequestration adjusted for tree removal and 
death, a net to gross sequestration ratio is applied for each state. The national average ratio, 0.74, is 
taken from Nowak et al. (2013) and applied to each state unless a state-specific value is available (North 
Dakota, South Dakota, Nebraska, Indiana, Tennessee, Kansas, and Washington DC have state-specific 
values). 

The full equation for the changes in stock status for urban trees is outlined below (Equation 7). The full 
set of calculations may be found in the Spreadsheet Appendix. 

Equation 7: Carbon stock change in urban trees (NGHGI 2018) 

∆𝐶𝑂T= = 	1,000 ∗
44
12 ∗@𝐴?= ∗ 	𝑇𝐶? ∗ 	𝐺𝑆? ∗ 𝐺𝑁?

n

?56

 

Where: 

∆𝐶𝑂T= = Total carbon stock change for urban trees in year t, metric tons CO2 

s = 1,…,S, representing each state 

𝐴?= = Urban area in state s in year t, square kilometers 

𝑇𝐶n = Percent urban tree cover in state s 

𝐺𝑆n = Gross sequestration rate in in urban trees in state s, kg C/m2 cover/year 

𝐺𝑁n = Gross to net sequestration ratio in urban trees in state s 

PROJECT METHODS 
In order to determine the contribution to uncertainty of each variable in Equation 7, we ran a 
contribution index analysis consistent with Ogle et al. (2003) using Equation 1 above. To complete this 
analysis, the standard error of each of the Equation 7 parameters (urban area, percent tree cover, gross 
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sequestration rate, and gross to net sequestration ratio) were determined from the literature or the 
NGHGI (2018). Table T-30 below identifies the source for each uncertainty parameter. Consistent with 
Ogle et al. (2003) method, each parameter’s uncertainty estimation was set to zero, and the new 
uncertainty for urban trees was calculated. The total error of the urban trees calculation is calculated by 
taking the square root of the sum of each parameters’ square. Relative contribution of each parameter to 
uncertainty was estimated by determining the difference in uncertainty between each parameter’s 
zeroed out value and the total uncertainty for the calculation. The percentage of these differences 
relative to the total uncertainty is that parameter’s relative contribution to uncertainty; the sum of these 
percentages comes to 100%.  

Table T-30: Uncertainty parameters and sources for urban trees 

Parameter Standard Error Source 
Urban Area +/- 10% Expert judgment, NGHGI 2018 

Tree Cover Percentage Varies by state; see Spreadsheet Appendix  
for full list 

Nowak and Greenfield 2012, Table 1 

Gross Sequestration Rate +/- 16.2% Nowak et al. 2013 

Gross to Net Ratio +/- 50.5% Nowak et al. 2013 

 

RESULTS 
The results of the contribution index analysis show that the gross to net sequestration ratio accounted 
for the largest portion (83%) of urban tree uncertainty (Table T-31), with urban area estimation and state-
wide sequestration rate both accounting for 6-7% of uncertainty.  

Table T-31: RESULTS – Contributions to uncertainty of urban tree carbon stock change 

Variable held constant Range of 95% Interval  
(MMT CO2e) 

Contribution to 
Uncertainty (%) 

Contribution to 
Uncertainty  
(MMT CO2e) 

None (all vary) 104.3 – – 

Urban Area 100.1 6.2 6.5 

Tree Cover Percentage 101.5 4.1 4.3 

Gross Sequestration Rate 99.7 6.7 7.0 

Gross to Net Ratio 48.0 83.0 86.5 

 

DISCUSSION 
The 95% confidence interval we found for urban trees (-145.0 to -40.7 MMT CO2) generally matches that 
reported in the 2018 NGHGI for 2016 (-136.9 to -47.9 MMT CO2), and we calculate the exact same mean 
(-92.9 MMT CO2), providing confidence in our calculation methods. 

The gross to net sequestration ratio for urban trees contributes significantly not only to the uncertainty of 
the estimation of urban trees, but for settlements and the LULUCF GHG inventory as a whole. This 
national average, taken from Nowak et al. (2013), is applied across the majority of states because no 
state-levels factors are available. Additional research could be completed to decrease the uncertainty in 
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this factor for state-level estimates if the current method of estimating urban trees is used in future 
inventories. 

For future inventories, the methods used to estimate urban trees could be further harmonized with those 
methods used in the forestry section. Methods for estimating biomass from the i-Tree method are 
consistent with using the Jenkins et al. (2003) (used in the LULUCF forestry section). However, as made 
clear by this analysis, the gross to net ratio is by far the largest source of uncertainty, and the use of this 
ratio could be avoided if the same carbon estimation methods were used across forests and urban trees. 

4.2 Carbon stock change in yard trimmings and food scraps 

NGHGI METHODS 
Biological waste disposed in landfills, including food scraps and yard trimmings, stores carbon and emits 
CH4 and CO2 through decay. The net carbon stock change from yard trimmings and food scraps is a 
function of the quantity of biological material decomposed in a landfill and the physical characteristics of 
the waste, including moisture and carbon content. To quantify annual carbon stock change in yard 
trimmings and food scraps, the NGHGI (2018) calculates the difference between carbon stocks in year t 
and year t-1. 

The first step is to determine the volume of biological material in U.S. landfills. The NGHGI time series 
for biological materials entering landfills goes back to 1960. The initial waste volume of each of the 
waste components is determined from the EPA guidance document, Advancing Sustainable Materials 
Management: Facts and Figures 2014 (ASMM 2014). Linear interpolation of historical data between 
1960-2000 is computed. The years 2015 and 2016 are assumed to have the same volume as 2014. The 
amount of composted material, taken from ASMM 2014, is removed from the estimate of waste, and the 
percent of municipal solid waste (MSW) is multiplied by the volume of each material reaching the landfill. 
Finally, for yard trimmings, the proportion of each material is multiplied by the total yard trimmings 
volume to determine the volume for grass, leaves, and branches (Table T-32). 

Table T-32: Proportion of yard trimmings (ASMM 2014) 

 

Next, the carbon content of the dry material is estimated. The wet tonnage of the material is converted 
to dry weight using values from Tchobanoglous et al. (1993). This value is then multiplied by the 
percentage of dry material that is carbon, taken from Barlaz (1998, 2005, 2008). Both percent moisture 
content and initial carbon content are outlined in Table T-33 below. 

Material Percentage of total yard trimmings (%) 
Grass 30.3 

Leaves 40.1 

Branches 29.6 
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Table T-33: Yard trimmings moisture and initial carbon content (Barlaz 1998, 2005, 2008) 

Material Percentage Moisture 
Content (%) 

Initial Carbon Content  
(%) 

Carbon Storage Factor 
(%) 

Decay Rate  
(k) 

Food Scraps 70 50.8 15.7 0.156 

Grass 70 44.9 53.5 0.323 

Leaves 31 45.5 84.6 0.185 

Branches 10 49.4 76.9 0.016 

 

For each year beginning in 1960 and applied through to the most recent Inventory year, the decay of 
each year’s waste is estimated using Equation 8 and with additional parameters of carbon storage factor 
and decay rate outlined in Table T-33. The total carbon stock is the sum of all previous years’ stocks 
adjusted for decay over time. For example, for the 2014 inventory year, the total carbon stock is equal to 
the undecayed carbon stock from biological waste deposited every year from 1960-2014 (inclusive).  

Equation 8: Landfilled yard trimmings and food scrap carbon stock (NGHGI 2018) 

𝐿𝐹𝐶U,= = 	@ 𝑊U,? ∗ (1 −𝑀𝐶U) ∗ r[𝐶𝑆U ∗ 𝐼𝐶𝐶U] + uv1 − (𝐶𝑆U ∗ 𝐼𝐶𝐶U)w ∗ 𝑒Zx(=Z?)yz
=

?5^
 

Where: 

𝑡 = Year for which C stocks are being determined 

𝑖 = Waste type for which C stocks are being estimated (grass, branches, leaves, or food scraps) 

𝐿𝐹𝐶U,= = stock of C in landfills in year t, for waste i (metric tons) 

𝑊U,? = Mass of waste i disposed of in year s (metric tons, wet) 

𝑠 = 0,…,t; Year in which waste is disposed of 

𝑀𝐶U = Moisture content of waste 

𝐶𝑆U = Proportion of C stored for waste 

𝐼𝐶𝐶U = Initial C content of waste 

𝑘 = First order decay rate for waste i 

PROJECT METHODS 
A Monte Carlo simulation of 10,000 runs was completed to determine the relative contribution to 
uncertainty for each of the parameters identified above using Equation 1 above (Ogle et al. 2003). All of 
the parameters were assumed to be normally distributed except for percentage carbon stored, which 
was assumed to be uniformly distributed, and the decay rates, which have triangular distributions. 
Parameters within a set (e.g., all the values for the ‘fraction of total weight’ parameter) were bounded to 
sum to 100% when added together and to be individually bounded between 0-100%. All of the 
parameters were held to bounds as determined by ICF International (2007) except for the decay rates, 
which are consistent with values in De la Cruz and Barlaz (2010). The assumed standard error for each 
parameter can be found in the Spreadsheet Appendix. The contribution index formulation allows for 
negative contributions to uncertainty, and we find that the decay rates have a contribution to uncertainty 
of -3.8%. This could be due to covariance with another element. We therefore scaled the percentage 
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contributions so that the sum of their absolute values is 100%. The result is that the sum of the 
contributions to uncertainty in MMT CO2e over all of the uncertainty elements is equal to the range of 
the 95% confidence interval derived from the Monte Carlo simulation where all variables are allowed to 
vary.  

RESULTS 
Mean values and variance were calculated using the output of the Monte Carlo simulations and the 
fluxes were summed to include all four components of yard trimmings and food scraps. The results 
summarized in Table T-34 show that the largest contributors to Yard Trimmings and Food Scraps 
uncertainty are the food scraps multiplier (40.9%) and the percentage of carbon stored (24.9%). 

Table T-34: RESULTS – Contribution to uncertainty of yard trimmings and food scraps  
carbon stock change  

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to Uncertainty 
(scaled, %) 

Contribution to uncertainty  
(MMT CO2e) 

None (all vary) 14.3 –  

Food Scraps Multiplier 11.0 40.9 5.8 

Percent Carbon Stored 12.3 24.9 3.6 

Moisture Content 13.4 11.4 1.6 

Yard Trimmings Multiplier 13.5 10.2 1.5 

Initial Carbon Content 13.9 5.1 0.7 

Fraction of Total Weight 14.0 4.0 0.6 

Decay Rates 14.6 3.5 0.5 

 

DISCUSSION 
Our calculation methods generally reproduce the mean flux value reported in the NGHGI (2018) for yard 
trimmings and food scraps, with our methods estimating -10.8 MMT CO2 and the NGHGI (2018) 
reporting -12.1 MMT CO2. Our Monte Carlo methods also capture a similar 95% confidence interval, 
with our methods estimating -17.9 to -3.6 MMT CO2 and the NGHGI (2018) reporting -19.0 to -4.8 MMT 
CO2, with all negative values representing CO2 sequestration. 

The yard trimmings and food scraps is not a significant area of uncertainty in the overall LULUCF 
inventory, but the multiplier values used to disaggregate yard trimmings and food scraps volume into 
different categories of biological waste (food scraps, grasses, leaves, branches) account for combined 
more than half of the uncertainty in this section. These values are not currently updated over time, 
despite likely changes. Additional research into the yard trimmings and food scraps multipliers could 
significantly reduce the uncertainty from this category, should that be of interest. 

4.3 N2O from settlement soils 

Direct and indirect emissions from N additions to settlement soils comprised 7 MMT CO2e in 2016 and 
were calculated using Tier 1 methodology (NGHGI 2018). Direct N2O emissions from settlement soils 
stem from biosolids (e.g., sewage sludge), synthetic N fertilizers applied to lawns, golf courses, and other 
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landscaping; and enhanced mineralization of N in drained organic soils. Indirect emissions come from N 
additions that are converted to a form other than N2O, and then later converted to N2O at an off-site 
location. 

For direct N2O emissions from synthetic fertilizers, N additions are estimated using 1990-2012 USGS on-
farm and non-farm fertilizer use estimates, which is based on fertilizer sale data. This amount is then 
multiplied by the IPCC default emission factor of 1% for converting applied N to N resulting in direct 
N2O emissions. For direct N2O emissions from biosolids, biosolid application estimates are calculated 
from national data on biosolid generation, disposition, and N content, and then multiplied by the same 
IPCC factor. For drained organic soil, the total area of drained organic soils is calculated using the 2012 
NRI and SSURGO, then multiplied by the IPCC default emission factor for temperate regions. This 
estimate does not currently include Alaska or federal lands (see the discussion on Federal cropland and 
grassland omitted GHG flux above). 

To estimate indirect emissions, the IPCC default factors for volatilization (10%) and leaching and runoff 
(30%) is multiplied by the total N applied from fertilizer and sludge, respectively. These numbers are 
then multiplied by the IPCC default factor of 1% for portion of volatilized N converted to N2O off-site, or 
the IPCC default factor of 0.75% for the portion of leached and runoff N that is converted to N2O off-
site. For both direct and indirect N2O emissions, a surrogate data method is used to calculate estimates 
from 2013 to 2016. 

Uncertainty is estimated through a Monte Carlo analysis, and combined with the uncertainty from 
biosolids application using error propagation methods. Uncertainty stems from several sources: N inputs, 
variables that influence rate of nitrification and denitrification, fertilizer N and biosolid application rates, 
variance in the NRI data, and IPCC default factors. It also comes from the surrogate data method used to 
estimate the time series from to 2013-2016.  

Due to the small contribution of N2O fluxes from N additions to settlement soils (Table T-35), we did not 
perform uncertainty attribution analysis beyond what is reported in the NGHGI (2018).  

Table T-35: RESULTS – Contributions to uncertainty of N2O emissions from settlement soils  

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to uncertainty 
(%) 

Contribution to uncertainty  
(MMT CO2e) 

None (all vary) 1.3 – – 

Direct N2O Fluxes 0.3 97.0 1.3 

Indirect N2O Fluxes 1.3 3.0 0.0 

 

4.4 Carbon stock change in drained organic settlement soils  

Similar to drained organic soil emissions from croplands, estimates of CO2 emissions from drained 
organic soils in settlements (1.3 MMT CO2e) follow a Tier 2 methodology and use the U.S.-specific 
emissions factors for cropland because settlement organic soils are assumed to have similar CO2 
emissions rates as croplands (NGHGI 2018). Settlement organic soil area, calculated from the NLCD and 
the 2012 NRI, is multiplied by IPCC default emission factors to estimate net carbon stock change. 
Uncertainty is estimated through a Monte Carlo analysis. Emissions from 2013 to 2016 are estimated 
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using a linear extrapolation because the NRI activity data was not available for those years in the 2018 
NGHGI, which contributes to additional uncertainty.  

Due to the small contribution of CO2 fluxes from drained organic soils (Table T-36), we did not perform 
uncertainty attribution analysis beyond what is reported in the NGHGI (2018). 

Table T-36: RESULTS – Contribution to uncertainty for drained organic settlement soils 

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to uncertainty 
(%) 

Contribution to uncertainty  
(MMT CO2e) 

Drained organic settlement soil 1.0 –  1.0 

4.5 Omitted GHG flux – Carbon stock change in settlement  
mineral soils 

NGHGI METHODS 
The NGHGI does not include an estimation of GHG fluxes from mineral soils in Settlements Remaining 
Settlements, despite the fact that mineral soils in the US account for more than 99.75% of the land area 
of soils in the country, and a similar ratio is likely to hold for settlement areas. Omitting carbon stock 
changes in settlement mineral soils is consistent with IPCC (2006) guidance. While the NGHGI (2018) 
estimates mineral soil fluxes for Land Converted to Settlements, the current inventory does not account 
for mineral soil fluxes from Settlements Remaining Settlements, citing a lack of activity data. 

PROJECT METHODS 
IPCC guidance indicates there is insufficient data for developing emissions factors for settlement mineral 
soil Tier 1 or 2 estimation. We use methods consistent with IPCC (2006) guidance and Tier 2 factors 
(NGHGI 2018, Table A-215) for cropland mineral soils, with input parameters summarized in Table T-37. 
Reference carbon stocks was taken from low clay activity mineral soils in cold temperate, dry climates 
and management stock change factor of 0.9 was used, consistent with low input cropland. Other default 
values for Tier 2 calculations were used, consistent with Tier 2 methods to calculate a per-hectare 
emissions factor of 0.825 MT CO2e. The total urban land area taken from the urban trees calculation was 
multiplied by this emissions factor to estimate an emissions value from mineral soils on urban land. 
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Table T-37: Input parameters for Tier 2 urban mineral soil GHG flux 

 Units Value Consistent With 
Reference carbon stock Tons C ha-1 45 Low clay activity mineral soils 

Stock change value  
for land-use system 

Dimensionless 1 Assuming settlement remaining settlement 

Stock change factor  
for management regime 

Dimensionless 0.9 Low input cropland 

Stock change factor  
for input of organic matter 

Dimensionless 1 Assuming no change in organic matter inputs 

Time change factor  
for stock change 

Years 20 Default value in Tier 1/2 calculations 

Settlement land area Million hectares 43 Total Settlement area  
(NGHGI 2018, Table 6-6) 

 

RESULTS 
Using equation 2.25 from IPCC (2006) guidance and input parameters from Table T-37, we estimate an 
annual emission of 34.7 MMT CO2, roughly the same amount as those coming from total croplands and 
grasslands. 

DISCUSSION 
The size of emissions from mineral soils on urban land was much higher than we expected, calculated as 
roughly the same as those found on croplands and grasslands. One challenge is that we were not able to 
remove impervious surfaces from urban land area. Even controlling for this, the emissions estimate is 
sizeable, considering the smaller settlement area compared to cropland and grassland. 

This estimate is relatively high, and not especially satisfying given that low input cropland is not well-
aligned with management practices on settlement soils. However, a recent study by Decina et al. (2016) 
estimates that fluxes from urban soils in Boston are as much as 2.62 times higher than those on nearby 
soils, while also noting significant differences between land use types such as lawn and forests. Emissions 
estimates generated from the emissions factors in that paper produce results significantly higher than 
those estimated here, suggesting that urban soils may indeed be a significant source of emissions. 
Further research and data are needed to estimate emissions from urban mineral soils across the country, 
such as additional measurements taken on urban soils beyond Boston. 
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5 Wetlands 
The NGHGI (2018) defines wetlands as areas where the water table is artificially changed or created 
through human activity that do not fall into Forest, Cropland, or Grassland categories, consistent with 
IPCC guidance (IPCC 2014). Therefore the NGHGI (2018) focuses exclusively on coastal wetlands, the 
only wetlands category unlikely to overlap with other land use categories, along with managed 
peatlands. All coastal wetlands are included in the NGHGI, without regard for managed vs. unmanaged 
designation due to lack of data. By only focusing on coastal wetlands (comprising approximately 2.9 
million hectares), there are over 40 million hectares of wetlands not accounted for in the NGHGI, 
including about 13 million hectares of inland and coastal wetlands in Alaska and Hawaii, with the 
remainder comprised of inland wetlands in the contiguous United States.  

A large challenge with U.S. wetlands is that there is a lack of data to determine which wetlands are 
managed vs. unmanaged, particularly for inland wetlands. No datasets currently allow for making this 
determination in the United States. Due to the lack of data, we do not attempt to quantify this omission 
in the NGHGI, however it could be sizeable given that the omitted area is approximately four percent of 
the managed U.S. land base. 

5.1 CO2, N2O, and CH4 from managed peatlands 

Managed peatland GHG emissions are apportioned into off-site CO2 emissions and on-site CO2, N2O, 
and CH4 emissions. On-site emissions occur due to land clearing and exposing the underlying peat to 
oxygen, which results in CO2 formation. Draining these landscapes also results in on-site N2O and CH4 
production. Off-site emissions occur due to dissolved organic carbon draining from managed peatlands 
and reacting with other compounds to form CO2. Most (94%) managed peatland emissions occur offsite. 

Offsite CO2 emissions are calculated by converting annual weight of U.S. peat production, both in the 
lower 48 states and Alaska, into estimates of managed peatland area using an average per hectare peat 
production rate derived from U.S. and Canadian data. These estimates are stratified by nutrient-rich vs. 
nutrient poor peat deposits. Peat production area estimates and then multiplied by IPCC default C 
conversion factors (IPCC 2006). Peat production statistics come from USGS and Alaska Department of 
Natural Resources official reports (USGS 1991-2016, 2018; DGGS 1993-2015). Alaska peat production is 
recorded in volume, so these values must be converted to weight to be consistent with lower 48 
estimates. The NGHGI does not include off-site CO2 emissions from peat produced outside the United 
States.  

Onsite emissions include CO2, N2O, and CH4 estimates. Peat production area estimates, as derived 
above, are multiplied by IPCC default emissions factors for CO2 and CH4 (IPCC 2006, 2014). Additional 
CH4 is also emitted from drainage ditches, the area of which are estimated using the IPCC default 
fraction of peatland area containing drainage ditches and then multiplied by the IPCC default emissions 
factor (IPCC 2014). 

The NGHGI estimates uncertainty of off-site and on-site peat emissions using a Monte Carlo analysis that 
accounts for uncertainty related to (with standard deviation as a percentage of mean listed): 
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• Peat production data, ±25% 
• Percent type of peat production (nutrient-rich vs. nutrient poor), ±25% 
• Bulk density of lower 48 and Alaska peat, ±25% 
• IPCC default emissions factors, C fraction factor, fraction of peatland covered by ditches, IPCC 

default uncertainty (2006, 2014) 

Note that uncertainty due to conversion of production tonnage to area of managed peatland is not 
accounted for. Identifying more data to calculate this factor or derive peatland area directly is noted as 
an NGHGI planned improvement. The current source for Alaska peat production data may be 
discontinued and only includes responses from half of Alaskan peat producers, so better data is needed 
here. 

Due to the small contribution of GHG fluxes from peatlands (Table T-38), we did not perform uncertainty 
attribution analysis beyond what is reported in the NGHGI (2018).  

Table T-38: RESULTS – Contributions to uncertainty of managed peatland CO2, N2O, CH4 emissions 

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to uncertainty 
(%) 

Contribution to uncertainty 
(MMT CO2e) 

None (all vary) 0.2 – – 

Offsite, Onsite – CO2  0.2 100 0.2 

Onsite – N2O – – – 

Onsite – CH4 – – – 

 

Note that onsite N2O and CH4 fluxes and uncertainty ranges do not exceed 0.05 MMT CO2e, and so 
contribute negligibly to total uncertainty of peatland emissions.  

We do not attempt to quantify potential omitted fluxes from peatland, such as new land cleared for peat 
extraction or offsite non-CO2 emissions, because U.S. peatland emissions have been declining steadily 
since 1990 and any omissions would likely be insignificant. 

5.2 Carbon stock change and CH4 in coastal wetlands  

Coastal wetlands are defined as wetlands found below the elevation of high tides and extending as far 
seaward as intertidal vascular plants can be found, including both federal and non-federal lands. 
The NGHGI coastal wetlands section includes: 

• Carbon stock changes and CH4 emissions from vegetated coastal wetlands remaining vegetated 
coastal wetlands; 

• Carbon stock changes on vegetated coastal wetlands converted to unvegetated open water 
coastal wetlands and vice versa; and 

• N2O emissions from aquaculture in coastal wetlands. 

Coastal wetland area is estimated and stratified using the National Oceanographic and Atmospheric 
Administration (NOAA) Coastal Change Analysis Program (C-CAP), which is not harmonized with other 
land area representation datasets used in the NGHGI (2018), including National Resources Inventory 
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(NRI), Forest Inventory and Analysis (FIA), and National Land Cover Database (NLCD). C-CAP is updated 
every four to five years, with the most recent dataset updated in 2010. Coastal wetland areas and land 
use change is extrapolated from 2010 to the latest NGHGI inventory year using past C-CAP land areas 
and assuming continuing trends. 

Carbon stock change estimates cover aboveground biomass and soil carbon, omitting estimates of 
belowground biomass, dead organic matter, and litter due to lack of data. Note that aboveground 
biomass was included for the first time in the 2019 NGHGI.  

Soil carbon stock changes are estimated equivalently for mineral and organic soils using U.S.-specific 
emissions factors derived from the literature, stratified by climate zone and wetland type (freshwater vs. 
saline, and further subdivided by emergent marsh, scrub shrub, and forested). Each emissions factor is 
multiplied by land area of its respective climate/wetland type. For vegetated to unvegetated conversions 
and vice versa, soil disturbance of 1 meter is assumed. All emissions are assumed to occur in the year of 
conversion. Note that there is no discussion in the NGHGI wetlands sections of soil carbon stock change 
estimation consistency across land types, which will create inconsistent estimates of soil carbon fluxes for 
land use change to and from coastal wetlands.  

Aboveground biomass is estimated using a national assessment combining plot and remote sensing 
data (Byrd et al. 2017, 2018). 

Soil CH4 emissions are estimated using Tier 1 methods, multiplying coastal wetland area by IPCC default 
CH4 factors, stratified by wetland type. For vegetated to unvegetated conversions and vice versa, a Tier 
1 assumption is applied such that methane emissions are zero due to unchanged salinity conditions. 

N2O from aquaculture in coastal wetlands is estimated using Tier 1 methods, multiplying U.S. seafood 
production by IPCC default emissions factors (IPCC 2014). All aquaculture production of catfish, striped 
bass, tilapia, trout, crawfish, salmon, and shrimp are included in these estimates. 

There is also a NGHGI (2018) section for Land converted to Wetlands, referring to non-wetland 
conversions to wetland, but which only covers land converted to vegetated coastal wetland. This section 
covers soil carbon stock change, aboveground biomass carbon stock change, and soil CH4 emissions. It 
does not appear that this section accounts for carbon stocks on the original land use type, though land 
conversion to wetland occurs across all land use types, including forests. This could be a significant 
omission, in proportion to the scale of wetland emissions, which are small.  

Due to the small contribution of each category of coastal wetlands GHG fluxes (Table T-39), we did not 
perform uncertainty attribution analysis beyond what is reported in the NGHGI (2018) for the four 
categories described above (aboveground biomass carbon stock change, soil carbon stock change, soil 
CH4 emissions, N2O from aquaculture). In Table T-39 we combine these four categories across vegetated 
coastal wetland remaining coastal wetland and all land use changes. 
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Table T-39: RESULTS – Contributions to uncertainty of coastal wetlands CO2 and CH4 emissions 

Variable held constant Range of 95% confidence 
interval (MMT CO2e) 

Contribution to uncertainty 
(%) 

Contribution to uncertainty  
(MMT CO2e) 

None (all vary) 4.5 – – 

Soil C stock change 2.2 77.7 3.5 

Aboveground biomass  
C stock change 

4.5 0.0 0.0 

Soil CH4 3.9 21.9 1.0 

N2O from aquaculture  
on coastal wetlands 

4.5 0.4 0.0 
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6 Alaska, Hawaii, and Territories 
The NGHGI does not cover all GHG flux categories in Alaska, Hawaii, and U.S. territories (including 
Puerto Rico, U.S. Virgin Islands, Guam, Northern Marianas Islands, and American Samoa). Table T-40 
shows that there is no LULUCF NGHGI data for U.S. Territories (comprising 0.1% of U.S. land base, Table 
T-41). Alaska is missing coverage for most land use and agricultural categories except forests. Hawaii’s 
forest carbon and wetland fluxes are not included, but cropland, grassland, and settlement GHG fluxes 
generally are. The NGHGI first started recording forest GHG fluxes in interior Alaska in the 2019 
publication, now covering all managed Alaskan forest land (over 30 million hectares, or 11% of total 
managed U.S. forest area). The NGHGI notes in many sections of the report that expanding coverage 
outside the conterminous United States (CONUS) is a planned improvement. 

Table T-40: NGHGI categories included for Alaska, Hawaii, and U.S. Territories  
for 2018 and 2019 NGHGI publication years 

NGHGI Category Sub-category NGHGI Publication Year 
Alaska Hawaii Territories 

2018 2019 2018 2019 2018 2019 
Ag. soil mgmt.  N2O, mineral and PRP N ü ü ü ü   

Ag. soil mgmt.  N2O, other N additionsa        

Ag. soil mgmt.  N2O, drained organic soils   ü ü   

Rice methane  N/A N/A N/A N/A   

Forests C stock changeb Coastal 
only 

ü     

Forests N2O, N additionsc N/A N/A N/A N/A   

Forests N2O, drained organic soilsc N/A N/A N/A N/A   

Forests Non-CO2, forest fires ü ü     

Cropland Soil C stock change   ü ü   

Grassland Soil C stock change   ü ü   

Grassland Non-CO2, grassland fires   ü ü   

Wetlands Peatlandsd ü ü N/A N/A   

Wetlands C stock change       

Wetlands N2O, aquaculturee ü ü ü ü   

Settlements Drained organic soils, C   ü ü   

Settlements Urban trees ü ü ü ü   

Settlements N2O, drained organic soils   ü ü   

Settlements Yard trimmings, food scrapse ü ü ü ü   

NGHGI Categories listed here include both, for example, cropland remaining cropland and land converted to cropland 
calculations. (a) Includes manure, residues, biosolids, sludge, and other organic fertilizers; (b) Forest carbon stock 
change does not include estimates of land converted to forest in Alaska for either 2018 or 2019; (c) NGHGI 2019 
includes forested areas with known N application, southeastern CONUS and western Oregon and Washington; only 
8 states have known artificially regenerated forest on organic soil based on all NFI annual plots, a proxy for drained 
organic soil, and this is not found in Alaska or Hawaii; (d) Alaska data is included although the data source has been 
unreliable and must be updated; (e) It is not clear whether Hawaii and Alaska are included in these categories although 
it appears that they would be due to data included in USDA Census of Aquaculture (2013) and Advancing Sustainable 
Materials Management: Facts and Figures 2015 (EPA 2018). 
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Table T-41: Land area (hectares) in Alaska, Hawaii, U.S. Territories by land use type,  
managed land only 

 Alaska Hawaiid Territoriese 
Forests 30,700,000a 797,106 482,962 

Cropland 28,700b 95,117 20,764 

Grassland 50,000,000c 1,279,565 342,777 

Wetlands 12,927,525d 9,765 31,252 

Settlement 180,105d 243,399 154,496 

Other 23,853,885d 406,147 13,133 

Total 171,800,000 2,831,100 1,045,385 

(a) NGHGI 2018 estimate of south central and southeastern coastal Alaska managed forest land plus NGHGI 2019 
estimate of interior Alaska managed forest land; (b) NGHGI (2019) estimate of Alaska cropland area; (c) NGHGI (2019) 
estimate of Alaska managed grassland area; (d) NLCD (2001) land cover estimates (Forests is combination of 
deciduous forest, evergreen forest; Cropland is cultivated crops; Grassland is shrub/scrub, grasslands/herbaceous, 
pasture/hay; Wetlands is combination of woody wetlands and emergent herbaceous wetlands; Settlements is 
combination of developed, open space/low/medium/high intensity; Other is combination of perennial ice snow, bare 
rock/sand/clay, moss); (e) Values from Table 6-9, NGHGI (2019), using a combination of NOAA C-CAP and NLCD land 
cover data.  

Note that Table T-41 covers only managed land. The NGHGI defines managed land as: forest lands with 
active fire protection and timber harvesting; grasslands located in counties with livestock; and all 
settlements and croplands (Ogle et al. 2018). Grassland and forest land that do not meet this initial 
criteria are considered managed if located within 10 km of a road, railway, or settlement. All wetlands 
are considered managed because there is insufficient data to determine which wetlands are artificially 
changed or created by human activity. Protected lands and lands with active/past resource extraction are 
considered managed. 

There are 46.3 million hectares of unmanaged U.S. lands, the majority of which are grassland, and forest 
in Alaska, and which are further than 10 km from any roads or railways (Ogle et al. 2018). Limiting GHG 
inventories to managed landscapes could create challenges in the future by not accounting for wildfires, 
permafrost melt, coastal wetland destruction, and other events that result in substantial GHG emissions 
on unmanaged lands.  

OMITTED GHG FLUXES IN ALASKA 
Here we estimate the omitted GHG flux categories in Alaska, with calculations annotated in the notes of 
Table T-42. More information on these calculations can be found in the Spreadsheet Appendix. 
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Table T-42: Omitted GHG flux estimates for Alaska 

NGHGI Category Sub-category Emission factor 
(MMT CO2e/Mha) 

Land area  
(Mha) 

GHG emissions 
(MMT CO2e) 

Ag. soil mgmt.  N2O, other N additions, cropland  
and grassland 

0.426 a 45.524 b 18.10 

Ag. soil mgmt.  N2O, drained organic soils 4.42 c 0.163 d 0.721 

Cropland Soil C stock change, drained organic 
soils 

24.06 e 0.00009 f 0.002 

Cropland Soil C stock change, mineral soils 0.15 g 0.0286 b -0.004 

Grassland Soil C stock change    30.50 h 

Grassland Non-CO2, grassland fires  0.227 i 0.389 j 

Wetlands C stock change   17.52 h 

Wetlands CH4 emissions   23.17 h 

Settlements C stock change, drained organic soils 46.43 k 0.0001 l 0.005 

Settlements N2O, drained organic soils 9.39 m 0.0001 l 0.001 

Total    90.40 

Negative values indicate CO2 sequestration. All tables discussed here and not otherwise cited refer to NGHGI (2019), 
Annex 3 and Chapter 6. (a) Total 2017 Tier 1 and Tier 3 N2O emissions on mineral soils from managed manure 
additions, other organic amendments, crop/grass residue N, mineralization of SOM (Table A-207, A-208) divided by 
total 2012 mineral soil cropland and grassland area, plus portion of indirect N2O emissions attributable to other N 
additions (Table A-216, A-217); (b) Total Alaska cropland and grassland mineral soil area, assuming 15% of Alaska 
grassland is organic soil (Table T-41 in this document); (c) Total N2O from drainage of organic soils on cropland and 
grassland (Table A-212) divided by total area of drained organic soils (Table A-201); (d) percent of total cropland and 
grassland area on organic soils (Table A-199), multiplied by total Alaska cropland and grassland area from Table T-41 
in this document. Note these calculations implicitly assume all (estimated) organic soil in Alaskan grasslands is drained, 
a strong assumption; (e) Total CO2 emissions from drained organic soils (Table A-214) divided by total area of drained 
organic soils (Table A-201); (f) Total Alaska cropland area multiplied by percent of total cropland and grassland area 
on organic soils (Table A-199). Note we do not include CO2 from grassland drained organic soils to avoid any overlap 
with grassland soil C stock change estimates from Zhu and McGuire (2016) (see part h); (g) Total CO2 flux from soil 
carbon stock change on cropland mineral soils (Table A-209) divided by area of cropland mineral soils (Table 6-7, 
Table A-199); (h) NGHGI (2018) Table 6-15 (Zhu and McGuire 2016 results overlaid on managed Alaska land base), 
Grassland soil C stock change includes methane emissions, Wetlands include all wetlands (not just coastal); (i) 
Calculated using Alaska Department of Natural Resources total area affected by fires 2009-2017, scaling up total 
Alaska managed forest fires (Table A-233) to total forest fires (managed + unmanaged) and subtracting this total from 
total fire area to find total grassland fire area, and scaling this down to managed grassland fire area. For detailed 
calculations see Spreadsheet Appendix; (j) Area of burned grassland is multiplied by 14.3 tons dry matter/ha (IPCC 
2006 default for shrublands – this is a higher amount of biomass than assumed for grassland fires in CONUS) and 
multiply dry matter by CH4 and N2O default emissions factors (IPCC 2006); (k) Total C flux from drained organic soils 
on U.S. settlements (Table 6-68) divided by U.S. settlement area on organic soils (Table 6-70); (l) U.S. settlement area 
on organic soils (Table 6-70) divided by total U.S. settlement area (Table 6-6) net Alaska settlement area (Table T-41 
in this document), multiplied by Alaska settlement area; (m) Total direct and indirect N2O from drained organic soils 
on U.S. settlements (Table 6-77) divided by U.S. settlement area on organic soils (Table 6-70). 

Note that most of the omitted Alaska GHG fluxes are estimated to be quite small, with the exception of 
soil carbon stock changes in grasslands and wetlands, and methane emissions from wetlands. These 
categories cover large areas of Alaska and also are at risk for significant changes due to climate change, 
as noted by Zhu and McGuire (2016).  
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Note than many of the omitted GHG fluxes calculated in other parts of the Technical Appendix do not 
include Alaska, for example non-CO2 from woody biomass burning in grassland fires, which would 
increase total omitted GHG fluxes in Alaska.  

OMITTED GHG FLUXES IN HAWAII 
Here we estimate the omitted GHG flux categories in Hawaii, with calculations annotated in the notes of 
Table T-43. More information on these calculations can be found in the Spreadsheet Appendix. 

Table T-43: RESULTS – Omitted GHG flux estimates for Hawaii 

NGHGI Category Sub-category Emissions factor  
(MMT CO2e/Mha) 

Land area  
(Mha) 

GHG emissions  
(MMT CO2e) 

Ag. soil mgmt.  N2O, other N additions  0.426 a 1.375 b 0.585 

Forests C stock change   6.857 c 

Forests Non-CO2, forest fires  0.00005 d 0.0001 e 

Wetlands C stock change   – f 

Total    7.44 

All tables discussed here and not otherwise cited refer to NGHGI (2019), Annex 3 and Chapter 6. (a) Total 2017 Tier 
1 and Tier 3 N2O emissions on mineral soils from managed manure additions, other organic amendments, crop/grass 
residue N, mineralization of SOM (Table A-207, A-208) divided by total 2012 mineral soil cropland and grassland area, 
plus portion of indirect N2O emissions attributable to other N additions (Table A-216, A-217); (b) Total Hawaii cropland 
and grassland area (Table T-41 in this document); (c) Taken directly from Selmants et al. (2017), Table 6.7, including 
native dry forest, invaded dry forest, native mesic-wet forest, invaded mesic-wet forest; (d) Calculated using Selmants 
et al. (2017), covering dry forest, mesic forest, and wet forest burned area; (e) Each forest type burned area is multiplied 
by amount of combusted dry matter, derived from Selmants et al. (2017), Table 5.7, these values are then multiplied 
by CH4 and N2O default emissions factors (IPCC 2006); (f) Wetlands comprise around 0.2% of land area in Hawaii 
(Selmants et al. 2017) and there is no additional evaluation of wetland carbon stock change or methane emissions in 
Selmants et al. (2017) or further evaluation of Hawaii wetland types. Therefore we did not attempt to estimate this 
small flux. 

Omitted GHG fluxes for Hawaii are smaller than Alaska but still substantial, deriving largely from omitting 
carbon stock change in Hawaiian forests. 

Note that even though Hawaii non-CO2 from grassland fires are included in the NGHGI, since the data is 
based on the Monitoring Trends in Burn Severity (MTBS) dataset, and this dataset is known to not cover 
all fires in Hawaii, the NGHGI values for grassland fires in Hawaii are likely an underestimate. However, 
the value of the omitted GHG flux is likely to be small, as demonstrated with the total flux from forest fire 
non-CO2 (Table T-43). 

OMITTED GHG FLUXES IN PUERTO RICO 
We do not estimate any omitted GHG fluxes from U.S. Territories as a whole. However, Puerto Rico 
comprises 85% of the land area of U.S. Territories. A 2014 report from the Center for Climate Strategies 
(CCS) estimated an economy-wide GHG baseline for Puerto Rico which includes N2O from cropland 
soils, carbon stock change from woody perennials on cropland, and forestry and urban tree carbon stock 
change (Table T-44). There are many missing GHG categories not covered in the CCS report, including 
carbon stock change in cropland soils, any fluxes in grasslands, carbon and non-CO2 emissions from 
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drained organic soils, any forest carbon fluxes other than above and below ground carbon, and 
settlement soils. However, we include available estimates here for context and prioritization. 

Table T-44: Center for Climate Strategies estimates for Puerto Rico land-related GHG fluxes, 2010 

GHG flux categories GHG emissions (MMT CO2e) 
N2O from cropland soils 0.13 

Woody perennial cropland carbon stock change -0.28 

Forest carbon stock change -0.56 

Urban tree carbon stock change -0.12 

Total -0.83 

Negative values indicate CO2 sequestration. 

FOREST CARBON STOCK CHANGE IN INTERIOR ALASKA  
In the 2019 NGHGI, forest carbon stock change estimates for interior Alaska were included for the first 
time. This added 24.5 million hectares of forest to the U.S. forest carbon inventory. The 2019 NGHGI 
does not list forest carbon stock change values separately for Alaska, nor does it separately report 
uncertainty calculations for interior Alaska. 

The interior Alaska method differs from that in the contiguous United States and coastal Alaska. While it 
still relies on plot-level FIA measurements starting in 2014, a gain-loss method is used rather than the 
stock change method used in coastal Alaska and the contiguous United States. The FIA plot density in 
interior Alaska is 1/5 of that in the contiguous U.S. and coastal Alaska.  

We did not attempt to attribute uncertainty for the Alaska forestry calculations, given limited information 
on data and methods. Many of the model error attribution estimates we calculate for the contiguous U.S. 
methods will apply to Alaska, and the smaller sampling rate will likely result in higher sampling error. 
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7 Appendix – Survey Results 
Table A-1: Cropland and grassland Tier 3 expert elicitation, full results for Section 2, Prompts 1-3 

Category Research need Rating Total # of 
responses 

Empirical data needs Build research site networks of N2O and CH4 soil fluxes and soil C 
measurements resulting from a diverse range of management 
activities (Schmidt et al. 2011). 

4.27 16 

Empirical data needs Establish a national soil monitoring network to produce for a full and 
consistent dataset of soil carbon measurements over time (Schmidt 
et al. 2011; Spencer et al. 2011). 

4.27 16 

Soil model development 
and intermodel comparison 

Improve model validation with updated comparisons to empirical 
regression models that are based on field experiments (Brevik et al. 
2015; Kuzyakov 2010; Paustian et al. 2016; Schmidt et al. 2011; 
Stockmann et al. 2013). 

4.18 17 

Soil model development 
and intermodel comparison 

Increase collaboration among model developers, shifting to a 
community-centered, open-source approach and integrating 
databases and computational tools (Paustian et al. 2016; Schmidt et 
al. 2011) 

4.09 17 

Primary soil research Influence of microbial activity – and other physicochemical and 
biological influences – on decomposition of organic matter/carbon, 
nitrogen and phosphorous cycling (Conant et al. 2011; Kuzyakov 
2010; Schmidt et al. 2011; Schimel & Schaeffer 2012). 

4.00 19 

Soil model development 
and intermodel comparison 

Expand model inter-comparison programs (such as AgMIP) to 
identify cross-cutting sources of uncertainty and opportunities for 
model improvement and cross-pollination. 

4.00 17 

Empirical data needs Obtain additional measurements of N2 production and losses from 
denitrification to clarify optimal N2/ N2O ratios for both modeling 
purposes and proper fertilizer management (Bakken & Frostegård 
2017; S. DelGrosso, personal communication, October 1, 2018; Well 
et al. 2018). 

4.00 16 

Soil model development 
and intermodel comparison 

Reconcile bottom-up, process-based accounting of N2O fluxes with 
newer top-down methods (e.g., atmospheric inversions) that capture 
N cycling from the global and regional perspective (Butterbach-Bahl 
2013; Chen et al. 2016; DelGrosso et al. 2008; S. DelGrosso, 
personal communication, October 1, 2018; Nevison et al. 2018). 

3.91 17 

Empirical data needs Obtain additional experimental data on above-ground N uptake or 
direct measurements of N2O for cross-site optimization/better 
validation of large scale model estimates of soil N2O fluxes (S. 
DelGrosso, personal communication, October 1, 2018; Ehrhardt et 
al. 2018; Reay et al. 2012; Van Groenigen et al. 2010). 

3.91 16 

Primary soil research Contribution of biochar feedstock type, production temperature and 
process, application rate, interactions with N sources, and more to 
the observed reduction of soil N2O emissions through biochar 
application (Cayuela et al. 2014). 

3.83 18 

Primary soil research Permafrost biogeochemistry and its role in driving nitrogen 
availability, as well as the freeze/thaw process of permafrost soil 
microbes, which may contribute to N2O emissions (Butterbach-Bahl 
2013; Schmidt et al. 2011). 

3.83 18 

Soil model development 
and intermodel comparison 

Shift from theoretical carbon pools to a mechanistic model that 
consider soil biological and physiochemical processes and drivers 
(Paustian et al. 2016; Stockmann 2013). 

3.82 17 

Soil model development 
and intermodel comparison 

Incorporate simultaneous simulation of nitrification and 
denitrification, topographical effects on soil hydrology, and other N 
dynamics, to more accurately reflect the complexities in N cycling 
(Butterbach-Bahl 2013). 

3.82 17 

Primary soil research Impact of warming temperatures on stores of carbon in permafrost, 
including the relationship between accelerated decomposition and 
increased nitrogen availability (Rumpel & Kogel-Knabner 2010; 
Schmidt et al. 2011). 

3.75 19 
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Empirical data needs Incorporate spatial data to better understand soil structure and its 
influence on soil biota, including microbial access to soil organic 
carbon (Schmidt et al. 2011; Stockmann et al. 2013). 

3.73 16 

Soil model development 
and intermodel comparison 

Model the entire soil profile, representing changes in processes and 
rate constants associated with depth of soil or carbon inputs (such as 
mineral associations and root and dissolved organic inputs). Include 
explicit depth resolution for decomposition and transport (Schmidt et 
al. 2011). 

3.64 17 

Empirical data needs Expand use of novel tools like isotopes, inhibitors and molecular 
techniques which can help to better characterize and quantify N2O 
soil processes (Butterbach-Bahl 2013; Cayuela et al. 2014). 

3.64 16 

Primary soil research Importance of soil moisture in driving process-specific loss rates of 
N2O (e.g., anaerobic conditions like increased soil water content or 
soil compaction stimulates denitrification and N2O emissions, as has 
been observed in conservation agriculture practices like low-till or 
no-till) (Butterbach-Bahl 2013; Met et al. 2018). 

3.58 18 

Primary soil research Impact of soil texture on CH4 emissions – better understanding the 
diminished emissions observed in clay soils versus silt soils (Brye et 
al. 2013). 

3.58 18 

Soil model development 
and intermodel comparison 

Include more microbial mechanisms to allow determination of soil 
carbon responses to global climate change (e.g., vary microbial 
growth efficiency instead treating it as a fixed parameter) (Stockmann 
et al. 2013; Wider et al. 2013). 

3.55 17 

Soil model development 
and intermodel comparison 

Consider impact of freeze/thaw on CO2 and CH4 production. 
Develop soil columns to represent different stages of O2 limitation 
and freezing effects, such as inundation, permafrost thaw and 
thermakarst (Schmidt et al. 2011). 

3.55 17 

Empirical data needs Generate high-quality data from new technologies, like soil 
measurements taken from sensors, to feed into models (Schmidt et 
al. 2011). 

3.55 16 

Empirical data needs Integrate databases and computational tools for advanced molecular 
SOM research (Schmidt et al. 2011). 

3.55 16 

Primary soil research The spatial architecture of the soil in the context of a soil ecosystem 
and how soil structure impacts microbial access to soil organic 
carbon (Paustian et al. 2016). 

3.50 19 

Primary soil research The properties and dynamics of carbon in deep soils, beyond the top 
30 cm (Dungait et al. 2012; Rumpel & Kogel-Knabner 2010; Schmidt 
et al. 2013). 

3.50 19 

Primary soil research Understanding the underlying processes that influence the accretion, 
turnover and stability of soil organic matter in subsoil horizons (which 
have been observed to have a long turnover time) (Paustian 2016; 
Rumpel & Kogel-Knabner 2010; Schmidt et al. 2013). 

3.50 19 

Primary soil research Influence of temperature changes on the rate of N2O reaction. 
Specifically, why N2O release is accelerated by rising temperatures as 
compared to falling temperatures and how this impacts modeling 
(Butterbach-Bahl 2013). 

3.50 18 

Empirical data needs Utilize top-down methodology, like atmospheric observations of 
trace-gas concentrations from satellite based measurements in 
combination with inverse modelling to estimate fluxes between the 
atmosphere and land surfaces, to verify against models based on 
observed management activities (Ogle et al. 2015; Schmidt et al. 
2011). 

3.45 16 

Empirical data needs Engage land-use stakeholders, tapping into their empirical 
knowledge of land management strategies, which can be combined 
with soil/climate maps, remote sensing and process-based models to 
calculate emissions (Paustian et al. 2016). 

3.45 16 

Empirical data needs Perform additional CH4 studies that assess CH4 fluxes to better 
validate large scale modeled estimates of CH4 fluxes. 

3.45 16 

Soil model development 
and intermodel comparison 

Create and model microbial functional types, similar to how plant 
functional types are considered (Schmidt et al. 2011). 

3.36 17 

Primary soil research Impact of soil erosion on the soil carbon cycle and its role in the 
storage or loss of carbon (Brevik et al. 2015). 

3.33 19 
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Soil model development 
and intermodel comparison 

Model the decay rate as a function of substrate properties and 
spatial positions in microenvironment, microbial activity and soil 
conditions (Schmidt et al. 2011). 

3.27 17 

Soil model development 
and intermodel comparison 

Expand application of existing models with validated parameters to 
include more diverse soil systems like peatlands and other organic 
soils (Dungait et al. 2012). 

3.27 17 

Soil model development 
and intermodel comparison 

Separately characterize above-ground and below-ground inputs 
(Schmidt et al. 2011). 

3.27 17 

Primary soil research Relationship between microbial carbon use efficiency and 
temperature; how carbon use efficiency declines or improves in 
response to temperature; and the influence of carbon use efficiency 
on soil carbon losses. (Alison et al. 2010). 

3.25 19 

Primary soil research Role of microbial biomass in soil organic matter turnover as a 
fundamental process affecting soil-priming effects. Consideration of 
microbes as not only a pool but as a driver of the turnover (Kuzyakov 
2010). 

3.25 19 

Primary soil research Role of soil fungi in denitrification, through additional field studies or 
using new technologies (Butterbach-Bahl 2013). 

3.25 18 

Primary soil research Influence of temperature change on CH4 fluxes from rice production. 
Reconciling sources of accelerated CH4 emissions, like higher rates of 
root decay, to sources of reduced CH4 emissions, like overheating, 
sterility, and diminished precipitation (Zhang et al. 2016). 

3.25 18 

Soil model development 
and intermodel comparison 

Shift towards landscape scale modelling of soil organic matter 
dynamics for more comprehensive view of the agricultural landscape, 
as opposed to soil-profile/plot scale (Fellman et al. 2010). 

3.18 17 

Soil model development 
and intermodel comparison 

Model the interactions between litter decay and soil organic 
formation (Cotrufo et al. 2012; Dungait et al. 2012). 

3.18 17 

Soil model development 
and intermodel comparison 

Incorporate water management types outside of continuous flooding 
when measuring CH4 (this is specific to DayCent) (U.S. National 
Greenhouse Gas Inventory 2018). 

3.18 17 

Soil model development 
and intermodel comparison 

Replace the concept of increasing recalcitrance due to 
decomposition and synthesis with organic matter cycling into and out 
of microbial biomass (Schmidt et al. 2011). 

3.09 17 

Soil model development 
and intermodel comparison 

Include physical processes that follow non-normal probability 
distributions and density-dependent terms for organic matter and 
microbial biomass (Schmidt et al. 2011).  

3.09 17 

Primary soil research The significance of roots and root exudates to the soil carbon stock 
changes[i] (39); clarity on the mechanisms underlying retention of 
root-derived carbon; and impact of fresh root inputs on 
decomposition and community composition (Schmidt et al. 2011). 

3.08 19 

Primary soil research Role of soil organism diversity in reducing loss of N through N2O 
emissions (Wagg 2014). 

3.08 18 

Primary soil research Microbial regulation of enzyme activities, particularly in response to 
temperature, precipitation and other climatic events (Burns et al. 
2013). 

3.00 19 

Primary soil research Formalizing through new models or modules the emerging 
understanding that soil organic matter is composed of inherently 
stable and chemically unique compounds, deviating from the 
traditional “humification” model that prioritizes physical/molecular 
properties of organic matter and sequences the decomposition of 
individual carbon pools in accordance with first order kinetics (Allison 
et al. 2010; Paustian et al. 2016; Schimel & Schaeffer 2012; Stockman 
et al. 2013). 

3.00 19 

Primary soil research Potential role of soil inhabiting archaea in producing N2O emissions 
(Butterbach-Bahl 2013). 

3.00 18 

Soil model development 
and intermodel comparison 

Water regimes of rice agricultural systems may be highly variable, 
but are often estimated through an assumption of homogenous 
water regimes. Shift to subgrid variability in water regimes to better 
capture CH4 emissions (Zhang et al. 2016). 

2.82 17 

Empirical data needs Improve accounting of N2O and CH4 emissions from the growing 
aquaculture industry, which remains poorly understood (Bridgham et 
al. 2013; Reay et al. 2012). 

2.82 16 
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Primary soil research Impact of short- and long-term effects of biochar and other fire-
derived organic matter amendments on soil carbon cycling and 
sequestration, including impacts on soil biota and soil chemical 
properties (Brevik et al. 2015; Lehmann et al. 2011). 

2.67 19 

Soil model development 
and intermodel comparison 

Include CH4 fluxes from land use types other than rice agriculture, 
like natural and managed grassland systems (DelGrosso et al. 2000).  

2.64 17 

Soil model development 
and intermodel comparison 

Improve model representations of rice varieties and iron 
reduction/oxidation to better estimate CH4 emissions in rice fields 
(Zhang et al. 2016). 

2.64 17 

Primary soil research Mechanistic processes underlying the impact of biochar on reducing 
N2O emissions: factors including, but not limited to, microbial 
immobilization of inorganic N in soil, alleviation of anoxic conditions, 
increased sorption capacity of biochars, reduction of N uptake by 
plants, and formation and stability of soil aggregates (Cayuela et al. 
2014; Clough et al. 2013; Singh et al. 2010). 

2.50 18 

Empirical data needs Utilize RNA technology to analyze microbial diversity, adding 
breadth to traditional DNA analyses of microbial activity (Baldrian et 
al. 2012; Brevik et al. 2015). 

2.45 16 

Empirical data needs Incorporate new information sources, like recently developed soil 
DNA databases (Paustian et al. 2016; Stockmann et al. 2013). 

2.45 16 

Primary soil research Decomposition pathways of biochar and other fire-derived organic 
matter (Schmidt et al. 2011). 

2.33 19 

Primary soil research CH4 and N2O emissions from aquaculture (currently this is an omitted 
flux in the NGHGI) (Reay et al. 2012). 

2.33 18 

Soil model development 
and intermodel comparison 

Include input pathway for fire-derived carbon (Schmidt et al. 2011). 2.27 17 

Soil model development 
and intermodel comparison 

Add aromatic compounds to soil organic matter types (Schmidt et al. 
2011). 

2.09 17 
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